Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Projection constants for $ C(S)$ spaces with the separable projection property


Author: John Warren Baker
Journal: Proc. Amer. Math. Soc. 41 (1973), 201-204
MSC: Primary 46B05; Secondary 46E15
DOI: https://doi.org/10.1090/S0002-9939-1973-0320707-8
MathSciNet review: 0320707
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if $ n$ and $ k$ are positive integers and $ C({\omega ^n}k)$ is the Banach space of continuous functions on the compact set $ \Gamma ({\omega ^n}k) = \{ \alpha \vert\alpha $ is an ordinal, $ \alpha \leqq {\omega ^n}k\} $ then $ C({\omega ^n}k) \in P'$ if and only if $ \gamma \leqq 2n + 1$. This establishes the value of the projection constant for all $ C(S)$ spaces possessing the separable projection property.


References [Enhancements On Off] (What's this?)

  • [1] D. Amir, Continuous function spaces with the separable projection property, Bull. Res. Counc. Israel, Sect. F 10F (1962), 163-164. MR 27 #566. MR 0150570 (27:566)
  • [2] -, Projections onto continuous function spaces, Proc. Amer. Math. Soc. 15 (1964), 396-402. MR 29 #2634. MR 0165350 (29:2634)
  • [3] R. Arens, Projections on continuous function spaces, Duke Math. J. 32 (1965), 469-478. MR 31 #6108. MR 0181882 (31:6108)
  • [4] J. W. Baker, Some uncomplemented subspaces of $ C(X)$ of the type $ C(Y)$, Studia Math. 36 (1970), 85-103. MR 43 #1113. MR 0275356 (43:1113)
  • [5] -, Uncomplemented $ C(X)$-subalgebras of $ C(X)$, Trans. Amer. Math. Soc. (to appear).
  • [6] D. Dean, Projections in certain continuous function spaces $ C(H)$ and subspaces of $ C(H)$ isomorphic with $ C(H)$, Canad. J. Math. 14 (1962), 385-401. MR 26 #1738. MR 0144191 (26:1738)
  • [7] W. Holsztyński, Continuous mappings induced by isometries of spaces of continuous functions, Studia Math. 26 (1966), 133-136. MR 33 #171l. MR 0193491 (33:1711)
  • [8] J. Kelley, General topology, Van Nostrand, Princeton, N.J., 1955. MR 16, 1136. MR 0070144 (16:1136c)
  • [9] R. McWilliams, On projections of separable subspaces of $ (m)$ onto $ (c)$, Proc. Amer. Math. Soc. 10 (1959), 872-876. MR 22 #182. MR 0109296 (22:182)
  • [10] A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. Rozprawy Mat. 58 (1968), 1-92. MR 37 #3335. MR 0227751 (37:3335)
  • [11] -, On $ C(S)$-subspaces of separable Banach spaces, Studia Math. 31 (1968), 513-522. MR 38 #2578. MR 0234261 (38:2578)
  • [12] A. Sobczyk, Projections of the space $ (m)$ on its subspace $ ({c_0})$, Bull. Amer. Math. Soc. 47 (1941), 938-947. MR 3, 205. MR 0005777 (3:205f)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B05, 46E15

Retrieve articles in all journals with MSC: 46B05, 46E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0320707-8
Keywords: Banach spaces, continuous function spaces, separable projection property
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society