Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The radical of $ L\sp{\infty }(G)\sp{\ast} $


Author: Edmond E. Granirer
Journal: Proc. Amer. Math. Soc. 41 (1973), 321-324
MSC: Primary 43A15
DOI: https://doi.org/10.1090/S0002-9939-1973-0326302-9
MathSciNet review: 0326302
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Theorem. Let $ G$ be any locally compact nondiscrete group (or any infinite discrete amenable group). Then the radical of the (complex, noncommutative) Banach algebra $ {L^\infty }{(G)^\ast }$ is not norm separable.


References [Enhancements On Off] (What's this?)

  • [1] Ching Chou, On topologically invariant means on a locally compact group, Trans. Amer. Math. Soc. 151 (1970), 443-456. MR 42 #4675. MR 0269780 (42:4675)
  • [2] P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870. MR 26 #622. MR 0143056 (26:622)
  • [3] N. Dunford and J. Schwartz, Linear operators. I. General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [4] L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [5] E. Granirer, On amenable semigroups with a finite dimensional set of invariant means. I, II, Illinois J. Math. 7 (1963), 32-48, 49-58. MR 26 #1744; #1745. MR 0144197 (26:1744)
  • [6] -, On the invariant means on topological semigroups and on topological groups, Pacific J. Math. 15 (1965), 107-140. MR 35 #286. MR 0209388 (35:286)
  • [7] -, Exposed points of convex sets and weak sequential convergence, Mem. Amer. Math. Soc. No. 123 (1972). MR 0365090 (51:1343)
  • [8] S. L. Gulick, Commutativity and ideals in the biduals of topological algebras, Pacific J. Math. 18 (1966), 121-137. MR 33 #3118. MR 0194912 (33:3118)
  • [9] E. Hewitt and K. Ross, Abstract harmonic analysis. Vol. I. Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #158. MR 551496 (81k:43001)
  • [10] M. Rajagopalan, Fourier transform in locally compact groups, Acta Szeged 25 (1964), 86-89. MR 29 #6250. MR 0168995 (29:6250)
  • [11] C. Rickart, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #5903. MR 0115101 (22:5903)
  • [12] James C. S. Wong, Topologically stationary locally compact groups and amenability, Trans. Amer. Math. Soc. 144 (1969), 351-363. MR 40 #2781. MR 0249536 (40:2781)
  • [13] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544. MR 19, 1067. MR 0092128 (19:1067c)
  • [14] E. Granirer and M. Rajagopalan, A note on the radical of the second conjugate algebra of a semigroup algebra, Math. Scand. 15 (1964), 163-166. MR 32 #2924. MR 0185457 (32:2924)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A15

Retrieve articles in all journals with MSC: 43A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0326302-9
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society