Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The radical of $ L\sp{\infty }(G)\sp{\ast} $

Author: Edmond E. Granirer
Journal: Proc. Amer. Math. Soc. 41 (1973), 321-324
MSC: Primary 43A15
MathSciNet review: 0326302
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Theorem. Let $ G$ be any locally compact nondiscrete group (or any infinite discrete amenable group). Then the radical of the (complex, noncommutative) Banach algebra $ {L^\infty }{(G)^\ast }$ is not norm separable.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A15

Retrieve articles in all journals with MSC: 43A15

Additional Information

Article copyright: © Copyright 1973 American Mathematical Society