Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The equation of Ramanujan-Nagell and $ [y\sp{2}]$


Author: D. G. Mead
Journal: Proc. Amer. Math. Soc. 41 (1973), 333-341
MSC: Primary 12H05
DOI: https://doi.org/10.1090/S0002-9939-1973-0327725-4
MathSciNet review: 0327725
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: By arithmetizing Levi's constructive test for membership in [$ [{y^2}]$] we have translated the questions of whether a given power product is in [$ [{y^2}]$] to determining whether a certain product of matrices is the zero matrix. This leads to number-theoretic problems, including the diophantine equations of the title $ {2^n} - 7 = {x^2}$.


References [Enhancements On Off] (What's this?)

  • [1] J. Browkin and A. Schinzel, Sur les nombres de Mersenne qui sont triangulaires, C. R. Acad. Sci. Paris 242 (1956), 1780-1781. MR 17, 1055. MR 0077546 (17:1055d)
  • [2] S. Chowla, M. Dunton and D. J. Lewis, All integral solutions of $ {2^n} - 7 = {x^2}$ are given by $ n = 3,4,5,6,7,15$, Norske Vid. Selsk. Forh. (Trondheim) B 33 (1960), no. 9; 37-38. MR 26 #6118. MR 0148611 (26:6118)
  • [3] Helmut Hasse, Über eine diophantische Gleichung von Ramanujan-Nagell und ihre verallgemeinerung, Nagoya Math. J. 27 (1966), 77-102. MR 34 #136. MR 0200237 (34:136)
  • [4] H. Levi, On the structure of differential polynomials and on their theory of ideals, Trans. Amer. Math. Soc. 51 (1942), 532-568. MR 3, 264. MR 0006163 (3:264f)
  • [5] D. G. Mead, Differential ideals, Proc. Amer. Math. Soc. 6 (1955), 420-432. MR 17, 123. MR 0071417 (17:123d)
  • [6] L. J. Mordell, Diophantine equations, Pure and Appl. Math., vol. 30, Academic Press, New York, 1969, pp. 205-206. MR 40 #2600. MR 0249355 (40:2600)
  • [7] T. Nagell, The diophantine equation $ {x^2} + 7 = {2^n}$, Ark. Math. 4 (1960), 185-187; Nordisk Mat. Tidskr. 30 (1948), 62-64. MR 24 #A83. MR 0130216 (24:A83)
  • [8] K. B. O'Keefe, Unusual power products and the ideal [$ [{y^2}]$], Proc. Amer. Math. Soc. 17 (1966), 757-758. MR 33 #4053. MR 0195857 (33:4053)
  • [9] S. Ramanujan, Problem 465, J. Indian Math. Soc. 5 (1913), 120.
  • [10] J. F. Ritt, Differential algebra, Amer. Math. Soc. Colloq. Publ., vol. 33, Amer. Math. Soc., Providence, R.I., 1950. MR 12, 7. MR 0035763 (12:7c)
  • [11] H. S. Shapiro and D. L. Slotnick, On the mathematical theory of error correcting codes, IBM J. Res. Develop. 3 (1959), 25-34. MR 20 #5092. MR 0098636 (20:5092)
  • [12] T. Skolem, S. Chowla and D. J. Lewis, The Diophantine equation $ {2^{n + 2}} - 7 = {x^2}$ and related problems, Proc. Amer. Math. Soc. 10 (1959), 663-669. MR 22 #25. MR 0109137 (22:25)
  • [13] Elementary problem E-2367, Amer. Math. Monthly 79 (1972), 772.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12H05

Retrieve articles in all journals with MSC: 12H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0327725-4
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society