Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A remark on the commutativity of certain rings


Author: Ram Awtar
Journal: Proc. Amer. Math. Soc. 41 (1973), 370-372
MSC: Primary 16A70
DOI: https://doi.org/10.1090/S0002-9939-1973-0327842-9
MathSciNet review: 0327842
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a recent paper [1] Gupta proved that a division ring satisfying the polynomial identity $ x{y^2}x = y{x^2}y$ is commutative. In this note our goal is to prove the following: If $ R$ is a semiprime ring with $ x{y^2}x - y{x^2}y$ central in $ R$, for all $ x,y$ in $ R$, then $ R$ is commutative.


References [Enhancements On Off] (What's this?)

  • [1] R. N. Gupta, Nilpotent matrices with invertible transpose, Proc. Amer. Math. Soc. 24 (1970), 572-575. MR 40 #5628. MR 0252408 (40:5628)
  • [2] I. N. Herstein, Topics in ring theory, Univ. of Chicago Press, Chicago, Ill., 1969. MR 42 #6018. MR 0271135 (42:6018)
  • [3] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. MR 20 #2361. MR 0095863 (20:2361)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A70

Retrieve articles in all journals with MSC: 16A70


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0327842-9
Keywords: Prime ring, semiprime ring, inner derivation, subdirect sum
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society