Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the first cohomology group of discrete groups with property $ (T)$


Author: S. P. Wang
Journal: Proc. Amer. Math. Soc. 42 (1974), 621-624
MSC: Primary 22E40
DOI: https://doi.org/10.1090/S0002-9939-1974-0354936-5
MathSciNet review: 0354936
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be a separable locally compact group with property (T), i.e., the class of one dimensional trivial representations is an isolated point in the dual space Ĝ of G. Let $ \pi :G \to {O_n}$ be a continuous representation of G into the orthogonal group. In this note, we show that $ {H^1}(G,\pi ) = 0$.


References [Enhancements On Off] (What's this?)

  • [1] A. Borel, Density properties of certain subgroups of semi-simple groups without compact components, Ann. of Math. (2) 72 (1960), 179-188. MR 23 #A964. MR 0123639 (23:A964)
  • [2] J. D. Dixmier, Points isolés dans le dual d'un groupe localement compact, Bull. Sci. Math. (2) 85 (1961), 91-96. MR 24 #A3237. MR 0133403 (24:A3237)
  • [3] Howard Garland, p-adic curvature and the cohomology of discrete subgroups of p-adic groups, Ann. of Math. (2) 97 (1973), 375-423. MR 0320180 (47:8719)
  • [4] D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71-74. (Russian) MR 35 #288. MR 0209390 (35:288)
  • [5] S. P. Wang, On a theorem of representation of lattices, Proc. Amer. Math. Soc. 23 (1969), 583-587. MR 40 #1530. MR 0248278 (40:1530)
  • [6] -, The dual space of semi-simple Lie groups, Amer. J. Math. 91 (1969), 921-937. MR 41 #3665. MR 0259023 (41:3665)
  • [7] -, On isolated points in the dual spaces of locally compact groups (to appear).
  • [8] A. Weil, Remarks on the cohomology of groups, Ann. of Math. (2) 80 (1964), 149-157. MR 30 #199. MR 0169956 (30:199)
  • [9] H. Whitney, Elementary structure of real algebraic varieties, Ann. of Math. (2) 66 (1957), 545-556. MR 20 #2342. MR 0095844 (20:2342)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E40

Retrieve articles in all journals with MSC: 22E40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0354936-5
Keywords: Locally compact groups, groups with property (T), affine semisimple algebraic groups
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society