The Radon-Nikodym property and dentable sets in Banach spaces

Authors:
W. J. Davis and R. R. Phelps

Journal:
Proc. Amer. Math. Soc. **45** (1974), 119-122

MSC:
Primary 46B05

MathSciNet review:
0344852

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In order to prove a Radon-Nikodym theorem for the Bochner integral, Rieffel [5] introduced the class of ``dentable'' subsets of Banach spaces. Maynard [3] later introduced the strictly larger class of ``-dentable'' sets, and extended Rieffel's result to show that *a Banach space has the Radon-Nikodym property if and only if every bounded nonempty subset of is -dentable*. He left open, however, the question as to whether, in a space with the Radon-Nikodym property, every bounded nonempty set is dentable. In the present note we give an elementary construction which shows this question has an affirmative answer.

**[1]**C. Bessaga and A. Pełczyński,*On extreme points in separable conjugate spaces*, Israel J. Math.**4**(1966), 262–264. MR**0211244****[2]**V. L. Klee Jr.,*Some characterizations of reflexivity*, Revista Ci., Lima**52**(1950), no. nos. 3-4, 15–23. MR**0043364****[3]**Hugh B. Maynard,*A geometrical characterization of Banach spaces with the Radon-Nikodym property*, Trans. Amer. Math. Soc.**185**(1973), 493–500. MR**0385521**, 10.1090/S0002-9947-1973-0385521-0**[4]**I. Namioka,*Neighborhoods of extreme points*, Israel J. Math.**5**(1967), 145–152. MR**0221271****[5]**M. A. Rieffel,*Dentable subsets of Banach spaces, with application to a Radon-Nikodým theorem*, Functional Analysis (Proc. Conf., Irvine, Calif., 1966) Academic Press, London; Thompson Book Co., Washington, D.C., 1967, pp. 71–77. MR**0222618****[6]**R. E. Huff,*Dentability and the Radon-Nikodým property*, Duke Math J.**41**(1974), 111–114. MR**0341033****[7]**R. R. Phelps,*Dentability and extreme points in Banach spaces*, J. Functional Analysis**17**(1974), 78–90. MR**0352941****[8]**R. E. Huff and P. D. Morris,*Dual spaces with the Krein-Milman property have the Radon-Nikodým property*, Proc. Amer. Math. Soc.**49**(1975), 104–108. MR**0361775**, 10.1090/S0002-9939-1975-0361775-9**[9]**G. A. Edgar,*A noncompact Choquet theorem*.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46B05

Retrieve articles in all journals with MSC: 46B05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1974-0344852-7

Keywords:
Banach space,
dentable sets,
vector valued measures,
Radon-Nikodym theorem

Article copyright:
© Copyright 1974
American Mathematical Society