Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A forcing proof of the Kechris-Moschovakis constructibility theorem

Author: Andreas Blass
Journal: Proc. Amer. Math. Soc. 47 (1975), 195-197
MathSciNet review: 0351819
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: We show, by forcing, that every subset of $ {\aleph _1}$ whose codes form a $ \Sigma _2^1$ set of reals must be constructible.

References [Enhancements On Off] (What's this?)

  • [1] Alexander S. Kechris and Yiannis N. Moschovakis, Two theorems about projective sets, Israel J. Math. 12 (1972), 391–399. MR 0323544
  • [2] J. R. Shoenfield, Unramified forcing, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 357–381. MR 0280359
  • [3] R. M. Solovay, Measurable cardinals and the axiom of determinateness, Lecture notes for Summer Institute on axiomatic set theory, UCLA (1967).

Additional Information

Article copyright: © Copyright 1975 American Mathematical Society