Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Triples on reflective subcategories of functor categories


Author: David C. Newell
Journal: Proc. Amer. Math. Soc. 47 (1975), 288-292
DOI: https://doi.org/10.1090/S0002-9939-1975-0354811-7
MathSciNet review: 0354811
Full-text PDF

Abstract | References | Additional Information

Abstract: We show that if $ \mathcal{S}$ is a cocontinuous triple on a full reflective subcategory of a functor category then the category of $ \mathcal{S}$-algebras is again a full reflective subcategory of a functor category.


References [Enhancements On Off] (What's this?)

  • [1] M. Artin, Grothendieck topologies, mimeographed notes, Harvard University.
  • [2] J. Beck, Distributive laws, Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), Springer, Berlin, 1969, pp. 119-140. MR 39 #2842. MR 0241502 (39:2842)
  • [3] M. Barr, Exact categories, Lecture Notes in Math., vol. 236, Springer-Verlag, Berlin and New York, 1971, pp. 1-120.
  • [4] J. Fisher-Palmquist and D. Newell, Triples on functor categories, J. Algebra 25 (1973), 226-258. MR 0323865 (48:2218)
  • [5] J. Giraud, Analysis situs, Séminaire Bourbaki, 1962/63, Fasc. 3, no. 256, Secrétariat mathématique, Paris, 1964, 11pp. MR 33 #1343. MR 0193122 (33:1343)
  • [6] A. Kock and G. C. Wraith, Elementary toposes, Lecture Notes Series, no. 30, Aarhus University, 1971. MR 0342578 (49:7324)
  • [7] S. Mac Lane, Categories for the working mathematician, Springer-Verlag, New York, 1971. MR 0354798 (50:7275)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0354811-7
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society