Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Approximating zeros of accretive operators


Author: Simeon Reich
Journal: Proc. Amer. Math. Soc. 51 (1975), 381-384
MSC: Primary 47H05
DOI: https://doi.org/10.1090/S0002-9939-1975-0470762-1
MathSciNet review: 0470762
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be an $ m$-accretive set in a reflexive Banach space $ E$ with a Gateaux differentiable norm. For positive $ r$ let $ {J_r}$ denote the resolvent of $ A$. If the duality mapping of $ E$ is weakly sequentially continuous and 0 is in the range of $ A$, then for each $ x$ in $ E$ the strong $ {\lim _{r \to \infty }}{J_r}x$ exists and belongs to $ {A^{ - 1}}(0)$. This is an extension to a Banach space setting of a result previously known only for Hilbert space.


References [Enhancements On Off] (What's this?)

  • [1] F. E. Browder, Fixed point theorems for nonlinear semicontractive mappings in Banach spaces, Arch. Rational Mech. Anal. 21 (1965/66), 259-269. MR 34 #641. MR 0200753 (34:641)
  • [2] R. E. Bruck, Jr., Properties of fixed point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251-262. MR 0324491 (48:2843)
  • [3] -, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 47 (1973), 341-355. MR 0341223 (49:5973)
  • [4] -, A strongly convergent iterative solution of $ 0 \in U(x)$ for a maximal monotone operator $ U$ in Hilbert space, J. Math. Anal. Appl. 48 (1974), 114-126. MR 0361941 (50:14383)
  • [5] J.-P. Gossez, A note on multivalued monotone operators, Michigan Math. J. 17 (1970), 347-350. MR 43 #7978. MR 0282266 (43:7978)
  • [6] J.-P. Gossez and E. Lami Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-573. MR 46 #9815. MR 0310717 (46:9815)
  • [7] T. Kato, Accretive operators and nonlinear evolution equations in Banach spaces, Proc. Sympos. Pure Math., vol. 18, Part 1, Amer. Math. Soc., Providence, R. I., 1970, pp. 138-161. MR 42 #6663. MR 0271782 (42:6663)
  • [8] S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl. 44 (1973), 57-70. MR 0328689 (48:7031)
  • [9] -, Asymptotic behavior of semigroups of nonlinear contractions in Banach spaces (to appear).
  • [10] C.-L. Yen, The range of $ m$-dissipative sets, Bull. Amer. Math. Soc. 78 (1972), 197-199. MR 44 #7395. MR 0290211 (44:7395)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H05

Retrieve articles in all journals with MSC: 47H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0470762-1
Keywords: Accretive, duality mapping, nonexpansive retract, strong and weak convergence
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society