Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Entireness of the endomorphism rings of one-dimensional formal groups


Author: Jonathan Lubin
Journal: Proc. Amer. Math. Soc. 52 (1975), 8-10
MSC: Primary 14L05
DOI: https://doi.org/10.1090/S0002-9939-1975-0374154-5
MathSciNet review: 0374154
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If, for a one-dimensional formal group of height $ h$ which is defined over the integers in a local field of characteristic zero, all the coefficients in degree less than $ {p^h}$ lie in an unramified extension of the $ p$-adic numbers, then the endomorphism ring of the formal group is integrally closed.


References [Enhancements On Off] (What's this?)

  • [1] Lawrence Cox, Formal $ A$-modules, Bull. Amer. Math. Soc. 79 (1973), 690-694. MR 48 #3973. MR 0325626 (48:3973)
  • [2] M. Lazard, Les zéros des fonctions analytiques d'une variable sur un corps valué complet, Inst. Hautes Études Sci. Publ. Math. No. 14 (1962), 47-75. MR 27 #2497. MR 0152519 (27:2497)
  • [3] Jonathan Lubin, One-parameter formal Lie groups over $ p$-adic integer rings, Ann. of Math. (2) 80 (1964), 464-484; Correction, ibid. (2) 84 (1966), 372. MR 29 #5827; 34 #179. MR 0168567 (29:5827)
  • [4] -, Finite subgroups and isogenies of one-parameter formal Lie groups, Ann. of Math. (2) 85 (1967), 296-302. MR 35 #189. MR 0209287 (35:189)
  • [5] -, Formal $ A$-modules defined over $ A$, Symposia Mathematica, vol. III (INDAM, Rome, 1968/69), Academic Press, London, 1970, pp. 241-245. MR 42 #260.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14L05

Retrieve articles in all journals with MSC: 14L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0374154-5
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society