Characterizing a circle with the double midset property
Authors:
L. D. Loveland and J. E. Valentine
Journal:
Proc. Amer. Math. Soc. 53 (1975), 443-444
MSC:
Primary 52A05; Secondary 54E40
DOI:
https://doi.org/10.1090/S0002-9939-1975-0388242-0
MathSciNet review:
0388242
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A short and elementary proof is given to show that a space is a circle with the natural geodesic metric if
is a nondegenerate, complete, convex metric space with the double midset property.
- [1] A. D. Berard, Jr., Characterizations of metric spaces by the use of their midsets: One-spheres, Notices Amer. Math. Soc. 19 (1972), A-198. Abstract #691-54-11.
- [2] -, Characterizations of metric spaces by the use of their midsets: One-spheres (Unpublished manuscript, 1-14).
- [3] A. D. Berard, Jr. and W. Nitka, A new definition of the circle by the use of bisectors, Fund. Math. 85 (1974), 49-55. MR 0355991 (50:8464)
- [4] L. M. Blumenthal, Theory and applications of distance geometry, Clarendon Press, Oxford, 1953. MR 14, 1009. MR 0054981 (14:1009a)
- [5] L. D. Loveland and J. E. Valentine, Convex metric spaces with 0-dimensional midsets, Proc. Amer. Math. Soc. 37 (1973), 568-571. MR 46 #9915. MR 0310817 (46:9915)
- [6] L. D. Loveland and S. G. Wayment, Characterizing a curve with the double midset property, Amer. Math. Monthly 81 (1974), 1003-1006. MR 0418059 (54:6103)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 52A05, 54E40
Retrieve articles in all journals with MSC: 52A05, 54E40
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1975-0388242-0
Keywords:
Convex,
midsets,
bisectors,
simple closed curves,
double midset property
Article copyright:
© Copyright 1975
American Mathematical Society