On the space of piecewise linear homeomorphisms of a manifold

Authors:
Ross Geoghegan and William E. Haver

Journal:
Proc. Amer. Math. Soc. **55** (1976), 145-151

MSC:
Primary 57E05; Secondary 57C99

DOI:
https://doi.org/10.1090/S0002-9939-1976-0402785-3

MathSciNet review:
0402785

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a compact PL manifold, ; if , suppose is empty. Let be the space of homeomorphisms on and the elements of which are isotopic to PL homeomorphisms. It is shown that the space of PL homeomorphisms, , has the finite dimensional compact absorption property in and hence that is an -manifold pair if and only if is an -manifold. In particular, if is a -manifold, is an -manifold pair.

**[1]**R. D. Anderson,*On sigma-compact subsets of infinite-dimensional spaces*, (preprint).**[2]**C. Bessaga and A. Pełczyński,*The estimated extension theorem, homogeneous collections and skeletons, and their applications to the topological classification of linear metric spaces*, Fund. Math.**69**(1970), 153-190. MR**42**#8227. MR**0273347 (42:8227)****[3]**R. H. Bing,*Radial engulfing*, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967), Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 1-18. MR**38**#6560. MR**0238284 (38:6560)****[4]**-,*Locally tame sets are tame*, Ann. of Math. (2)**59**(1954), 145-158. MR**15**, 816. MR**0061377 (15:816d)****[5]**T. A. Chapman,*Dense sigma-compact subsets of infinite-dimensional manifolds*, Trans. Amer. Math. Soc.**154**(1971), 339-426. MR**44**# 1058. MR**0283828 (44:1058)****[6]**A. V. Černavskiĭ,*Local contractibility of the homeomorphism group of a manifold*, Dokl. Akad. Nauk SSSR**182**(1968), 510-513 = Soviet Math. Dokl.**9**(1968), 1171-1174. MR**38**#5241. MR**0236948 (38:5241)****[7]**E. H. Connell,*Approximating stable homeomorphisms by piecewise linear ones*, Ann. of Math. (2)**78**(1963), 326-338. MR**27**#4238. MR**0154289 (27:4238)****[8]**R. D. Edwards and R. C. Kirby,*Deformations of spaces of embeddings*, Ann. of Math. (2)**93**(1971), 63-88. MR**44**#1032. MR**0283802 (44:1032)****[9]**G. M. Fisher,*On the group of all homeomorphisms on a manifold*, Trans. Amer. Math. Soc.**97**(1960), 193-212. MR**22**#8487. MR**0117712 (22:8487)****[10]**D. Gauld,*Local contractibility of**for a compact manifold*, Preprint, Univ. of Auckland Dept. of Math. Rep. Ser., no. 47, 1973.**[11]**R. Geoghegan,*On spaces of homeomorphisms, embeddings, and functions*. I, Topology**11**(1972), 159-177. MR**45**#4349. MR**0295281 (45:4349)****[12]**-,*On spaces of homeomorphisms, embeddings, and functions*. II.*The piecewise linear case*, Proc. London Math. Soc. (3)**27**(1973), 463-483. MR**0328969 (48:7311)****[13]**W. E. Haver,*Locally contractible spaces that are absolute neighborhood retracts*, Proc. Amer. Math. Soc.**40**(1973), 280-284. MR**0331311 (48:9645)****[14]**D. W. Henderson and J. E. West,*Triangulated infinite-dimensional manifolds*, Bull. Amer. Math. Soc.**76**(1970), 655-660. MR**41**#2714; erratum,**41**p. 1966. MR**0258067 (41:2714)****[15]**S. T. Hu,*Theory of retracts*, Wayne State Univ. Press, Detroit, Mich., 1965. MR**31**#6202. MR**0181977 (31:6202)****[16]**J. Keesling and D. Wilson,*The group of*-*homeomorphisms of a compact*-*manifold is an*-*manifold*, Trans. Amer. Math. Soc.**193**(1974), 249-256. MR**0368046 (51:4288)****[17]**R. Kirby,*Lectures on triangulations of manifolds*, Mimeographed Notes, Univ. of California, Los Angeles, Calif., 1969.**[18]**R. Luke and W. K. Mason,*The space of homeomorphisms on a compact two-manifold is an**absolute neighborhood retract*, Trans. Amer. Math. Soc.**164**(1972), 273-285. MR**46**#849. MR**0301693 (46:849)****[19]**T. Rádo,*Über den Begriff Riemannschen Fläche*, Szeged Univ. Act.**2**(1925), 101-121.**[20]**H. Toruńczyk,*Absolute retracts as factors of normed linear spaces*, Fund. Math. (to appear). MR**0365471 (51:1723)****[21]**J. E. West,*The ambient homeomorphy of an incomplete subspace of infinite-dimensional Hilbert spaces*, Pacific J. Math.**34**(1970), 257-267. MR**43**#2748. MR**0277011 (43:2748)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57E05,
57C99

Retrieve articles in all journals with MSC: 57E05, 57C99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1976-0402785-3

Article copyright:
© Copyright 1976
American Mathematical Society