On the space of piecewise linear homeomorphisms of a manifold

Authors:
Ross Geoghegan and William E. Haver

Journal:
Proc. Amer. Math. Soc. **55** (1976), 145-151

MSC:
Primary 57E05; Secondary 57C99

MathSciNet review:
0402785

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a compact PL manifold, ; if , suppose is empty. Let be the space of homeomorphisms on and the elements of which are isotopic to PL homeomorphisms. It is shown that the space of PL homeomorphisms, , has the finite dimensional compact absorption property in and hence that is an -manifold pair if and only if is an -manifold. In particular, if is a -manifold, is an -manifold pair.

**[1]**R. D. Anderson,*On sigma-compact subsets of infinite-dimensional spaces*, (preprint).**[2]**C. Bessaga and A. Pełczyński,*The estimated extension theorem, homogeneous collections and skeletons, and their applications to the topological classification of linear metric spaces and convex sets*, Fund. Math.**69**(1970), 153–190. MR**0273347****[3]**R. H. Bing,*Radial engulfing*, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 1–18. MR**0238284****[4]**R. H. Bing,*Locally tame sets are tame*, Ann. of Math. (2)**59**(1954), 145–158. MR**0061377****[5]**T. A. Chapman,*Dense sigma-compact subsets of infinite-dimensional manifolds*, Trans. Amer. Math. Soc.**154**(1971), 399–426. MR**0283828**, 10.1090/S0002-9947-1971-0283828-7**[6]**A. V. Černavskiĭ,*Local contractibility of the group of homeomorphisms of a manifold.*, Dokl. Akad. Nauk SSSR**182**(1968), 510–513 (Russian). MR**0236948****[7]**E. H. Connell,*Approximating stable homeomorphisms by piecewise linear ones*, Ann. of Math. (2)**78**(1963), 326–338. MR**0154289****[8]**Robert D. Edwards and Robion C. Kirby,*Deformations of spaces of imbeddings*, Ann. Math. (2)**93**(1971), 63–88. MR**0283802****[9]**Gordon M. Fisher,*On the group of all homeomorphisms of a manifold*, Trans. Amer. Math. Soc.**97**(1960), 193–212. MR**0117712**, 10.1090/S0002-9947-1960-0117712-9**[10]**D. Gauld,*Local contractibility of**for a compact manifold*, Preprint, Univ. of Auckland Dept. of Math. Rep. Ser., no. 47, 1973.**[11]**Ross Geoghegan,*On spaces of homeomorphisms, embeddings and functions. I*, Topology**11**(1972), 159–177. MR**0295281****[12]**Ross Geoghegan,*On spaces of homeomorphisms, embeddings, and functions. II. The piecewise linear case*, Proc. London Math. Soc. (3)**27**(1973), 463–483. MR**0328969****[13]**William E. Haver,*Locally contractible spaces that are absolute neighborhood retracts*, Proc. Amer. Math. Soc.**40**(1973), 280–284. MR**0331311**, 10.1090/S0002-9939-1973-0331311-X**[14]**David W. Henderson and James E. West,*Triangulated infinite-dimensional manifolds*, Bull. Amer. Math. Soc.**76**(1970), 655–660. MR**0258067**, 10.1090/S0002-9904-1970-12478-8**[15]**Sze-tsen Hu,*Theory of retracts*, Wayne State University Press, Detroit, 1965. MR**0181977****[16]**James Keesling and David C. Wilson,*The group of 𝑃𝐿-homeomorphisms of a compact 𝑃𝐿-manifold is an 1^{𝑓}₂-manifold*, Trans. Amer. Math. Soc.**193**(1974), 249–256. MR**0368046**, 10.1090/S0002-9947-1974-0368046-9**[17]**R. Kirby,*Lectures on triangulations of manifolds*, Mimeographed Notes, Univ. of California, Los Angeles, Calif., 1969.**[18]**R. Luke and W. K. Mason,*The space of homeomorphisms on a compact two-manifold is an absolute neighborhood retract*, Trans. Amer. Math. Soc.**164**(1972), 275–285. MR**0301693**, 10.1090/S0002-9947-1972-0301693-7**[19]**T. Rádo,*Über den Begriff Riemannschen Fläche*, Szeged Univ. Act.**2**(1925), 101-121.**[20]**H. Toruńczyk,*Absolute retracts as factors of normed linear spaces*, Fund. Math.**86**(1974), 53–67. MR**0365471****[21]**James E. West,*The ambient homeomorphy of an incomplete subspace of infinite-dimensional Hilbert spaces*, Pacific J. Math.**34**(1970), 257–267. MR**0277011**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57E05,
57C99

Retrieve articles in all journals with MSC: 57E05, 57C99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1976-0402785-3

Article copyright:
© Copyright 1976
American Mathematical Society