Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a convexity property of the range of a maximal monotone operator


Author: Jean-Pierre Gossez
Journal: Proc. Amer. Math. Soc. 55 (1976), 359-360
DOI: https://doi.org/10.1090/S0002-9939-1976-0397485-2
MathSciNet review: 0397485
Full-text PDF

Abstract | References | Additional Information

Abstract: An example is given which shows that the closure of the range of a maximal monotone operator from a (nonreflexive) Banach space into its dual is not necessarily convex.


References [Enhancements On Off] (What's this?)

  • [1] A. Brøndsted and R. T. Rockafellar, On the subdifferentiability of convex functions, Proc. Amer. Math. Soc. 16 (1965), 605-611. MR 31 #2361. MR 0178103 (31:2361)
  • [2] J.-P. Gossez, Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs, J. Math. Anal. Appl. 34 (1971), 371-395. MR 47 #2442. MR 0313890 (47:2442)
  • [3] -, On the range of a coercive maximal monotone operator in a nonreflexive Banach space, Proc. Amer. Math. Soc. 35 (1972), 88-92. MR 45 #7544. MR 0298492 (45:7544)
  • [4] R. T. Rockafellar, Convex functions, monotone operators and variational inequalities, Theory and Applications of Monotone Operators (Proc. NATO Advanced Study Inst., Venice, 1968), Edizioni ``Oderisi", Gubbio, 1969, pp. 35-65. MR 41 #6028. MR 0261415 (41:6028)
  • [5] -, On the virtual convexity of the domain and range of a nonlinear monotone operator, Math. Ann. 185 (1970), 81 -90. MR 41 #4330. MR 0259697 (41:4330)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0397485-2
Keywords: Nonreflexive Banach space, maximal monotone operator, convex set, bidual space
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society