Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a conjecture of S. Chowla


Author: D. Suryanarayana
Journal: Proc. Amer. Math. Soc. 56 (1976), 27-33
MSC: Primary 10H25
DOI: https://doi.org/10.1090/S0002-9939-1976-0401682-7
MathSciNet review: 0401682
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \psi (x) = x - [x] - \tfrac{1}{2}$. It has been conjectured by S. Chowla that $ {\Sigma _{n \leqslant \surd x}}\{ {\psi ^2}(x/n) - 1/12\} = o({x^{1/4 + \epsilon }})$, for every $ \epsilon > 0$. In this paper we show that this conjecture is equivalent to $ {\Sigma _{n \leqslant \surd x}}{n^2}\{ {\psi ^2}(x/n) - 1/12\} $ by proving that

$\displaystyle \sum\limits_{n \leqslant \surd x} {\left\{ {{\psi ^2}\left( {\tfr... ...2}\left( {\tfrac{x}{n}} \right) - \tfrac{1}{{12}}} \right\} = o({x^{1/4}}).} } $


References [Enhancements On Off] (What's this?)

  • [1] S. Chowla and H. Walum, On the divisor problem, Norske Vid. Selsk. Forh. (Trondhein) 36 (1963), 127-134; Proc. Sympos. Pure Math., vol. 8, Amer. Math. Soc., Providence, R.I., 1965, pp. 138-143. MR 28 #3972; 30 #4733. MR 0160761 (28:3972)
  • [2] S. Chowla, The Riemann hypothesis and Hilbert's tenth problem, Math. and its Applications, vol. 4, Gordon and Breach, New York, 1965. MR 31 #2201. MR 0177943 (31:2201)
  • [3] G. A. Kolesnik, An estimate for certain trigonometric sums, Acta Arith. 25 (1973/74), 7-30. (Russian) MR 48 #11002. MR 0332676 (48:11002)
  • [4] S. L. Segal, A note on the average order of number-theoretic error terms, Duke Math. J. 32 (1965), 279-284; erratum, ibid. 32 (1965), 765. MR 31 #3391; 32 #95. MR 0179140 (31:3391)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10H25

Retrieve articles in all journals with MSC: 10H25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0401682-7
Keywords: Dirichlet's divisor problem, average order of number-theoretic error terms
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society