Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On $ \mathrm{hom}\,\dim M \mathrm{U}_* (X\times Y)$

Author: Duane O’Neill
Journal: Proc. Amer. Math. Soc. 56 (1976), 288-290
MSC: Primary 55B45
MathSciNet review: 0407831
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ p$ be a prime and $ B{\mathbf{Z}}/p$ the classifying space for the cyclic group $ {\mathbf{Z}}/p$ of prime order $ p$. A finite complex $ X$ is constructed such that

$\displaystyle \hom \cdot {\dim _{M{U_ \ast }}}M{U_ \ast }(X \times B{\mathbf{Z}... ...}M{U_ \ast }(X) + \hom \cdot {\dim _{M{U_ \ast }}}M{U_ \ast }(B{\mathbf{Z}}/p).$

References [Enhancements On Off] (What's this?)

  • [1] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band 33, Academic Press, New York; Springer-Verlag, Berlin, 1964. MR 31 #750. MR 0176478 (31:750)
  • [2] P. E. Conner and L. Smith, On the complex bordism of finite complexes, Inst. Hautes Études Sci. Publ. Math. No. 37 (1969), 117-221. MR 42 #2473. MR 0267571 (42:2473)
  • [3] L. Smith, On realizing complex bordism modules. I, II, Amer. J. Math. 92 (1970), 793-856; ibid. 93 (1971), 226-263. MR 43 #1186a, b.
  • [4] R. E. Stong (Editor), Some research problems in complex bordism and related areas, Univ. of Kentucky, 1973.
  • [5] N. Yamamoto, Algebra of stable homotopy of Moore space, J. Math. Osaka City Univ. 14 (1963), 45-67. MR 28 #616. MR 0157382 (28:616)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55B45

Retrieve articles in all journals with MSC: 55B45

Additional Information

Keywords: Projective dimension of complex bordism modules of Cartesian products
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society