Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Relating group topologies by their continuous points


Author: Kevin J. Sharpe
Journal: Proc. Amer. Math. Soc. 57 (1976), 179-182
MSC: Primary 22B99
DOI: https://doi.org/10.1090/S0002-9939-1976-0422488-9
MathSciNet review: 0422488
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ x$ be a point in a topological group $ G$, and for each integer $ n$, let $ (1/n)x$ be the set $ \{ y:ny = x\} $ in $ G$. Then I call $ x$ a continuous point if for positive integers $ n$, the subsets $ (1/n)x$ are nonvoid and eventually intersect each neighbourhood of the identity 0. I prove the following result and from it three corollaries. Let $ G$ be a divisible abelian group such that $ (1/n)0 = \{ 0\} $ for some integer $ n \geqslant 2$. Suppose there are two group topologies $ {\mathcal{A}_1}$ and $ {\mathcal{A}_2}$ defined on $ G$ and that $ G$ is $ {\mathcal{A}_2}$-locally compact and $ \sigma $-compact, and define $ {\omega _2}$ to be the outer measure derived from the Haar measure $ {\mu _2}$ on $ (G,{\mathcal{A}_2})$. Also suppose that the ratio of the $ {\mathcal{A}_2}$-measure of $ \{ nx:x \in A\} $ to the $ {\mathcal{A}_2}$-measure of $ A$, for any $ {\mathcal{A}_2}$-Borel-measurable set $ A$ (the ratio is the same for any such $ A$ with finite measure), does not exceed 1. Then for each $ {\mathcal{A}_2}$-Borel-measurable set $ A$ with nonvoid $ {\mathcal{A}_1}$-interior, $ {\mu _2}(A) \geqslant {\omega _2}({W_1}),{W_1}$ being the subgroup of all points in $ G$ which are $ {\mathcal{A}_1}$-continuous.


References [Enhancements On Off] (What's this?)

  • [1] D. N. Hawley, Compact group topologies for $ R$, Proc. Amer. Math. Soc. 30 (1971), 566-572. MR 43 #7548. MR 0281834 (43:7548)
  • [2] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #158. MR 551496 (81k:43001)
  • [3] L. S. Pontrjagin, Topological groups, 2nd ed., GITTL, Moscow, 1954; English transl., Gordon and Breach, New York, 1966. MR 17, 171; MR 34 #1439. MR 0201557 (34:1439)
  • [4] K. J. Sharpe, Two properties of $ {R^N}$ with a compact group topology, Proc. Amer. Math. Soc. 34 (1972), 267-269. MR 45 #2083. MR 0293002 (45:2083)
  • [5] -, Continuous points in topological groups (submitted).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22B99

Retrieve articles in all journals with MSC: 22B99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0422488-9
Keywords: Continuous points, topological group, Haar measure, Hawley property, uniquely rooted group
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society