Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Singular perturbations and the transition from thin plate to membrane


Author: Zeev Schuss
Journal: Proc. Amer. Math. Soc. 58 (1976), 139-147
MSC: Primary 35B25
DOI: https://doi.org/10.1090/S0002-9939-1976-0412571-6
MathSciNet review: 0412571
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The equation

$\displaystyle \frac{{E{h^2}}}{{12(1 - {\sigma ^2})}}{\Delta ^2}w - \sum\limits_... ..._i}}}\left( {{\sigma _{ij}}\frac{{\partial w}}{{\partial {x_j}}}} \right) = f} $

describing the normal displacement $ w$ of a thin elastic plate of thickness $ h$ under uniform tension in equilibrium is considered. It is shown that if the displacement and its normal derivative on the edge of the plate are bounded uniformly with respect to $ h$ then the solution $ u$ of the membrane equation

$\displaystyle - \sum\limits_{ij = 1}^2 {\frac{\partial }{{\partial {x_i}}}\left( {{\sigma _{ij}}\frac{{\partial u}}{{\partial {x_j}}}} \right)} = f$

with the same boundary values as $ w$ approximates the displacement throughout the plate in the $ {L^2}$ sense. Herein, the rate

$\displaystyle ( \ast )\quad \iint\limits_\Omega {\vert w(x) - u(x){\vert^2}dx \in C{h^2}}\iint\limits_\Omega {\vert f(x){\vert^2}}dx$

is given, where $ C$ is a constant independent of $ h$ and $ f$, and $ \Omega $ in the face of the plate. This extends the results of A. Friedman [6] and F. John [10] up to the boundary and improves the rate of convergence in ($ ( \ast )$) given by J. L. Lions [12] and W. M. Greenlee [7] from $ h$ to $ {h^2}$.

References [Enhancements On Off] (What's this?)

  • [1] M. S. Baouendi and C. Goulaouic, Régularité et théorie spectrale pour une classe d' opérateurs elliptiques dégénérés, Arch. Rational Mech. Anal. 34 (1969), 361-379. MR 40 #3085; erratum, 41, p. 1964. MR 0249844 (40:3085)
  • [2] C. Bardos, D. Brézis and H. Brézis, Perturbationes singulières et prolongements maximaux d'operateurs positifs, Arch. Rational Mech. Anal. 53 (1973/74), 69-100. MR 50 #745. MR 0348247 (50:745)
  • [3] P. Bolley and J. Camus, Sur une classe d'opérateurs elliptiques et dégénérés a plusieurs variables, Bull. Soc. Math. France Mém. 34 (1973), 55-140. MR 0481502 (58:1618)
  • [4] N. Dunford and J. T. Schwartz, Linear operators. I. General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [5] A. Friedman, Partial differential equations, Holt, Rinehart and Winston, New York, 1969. MR 0445088 (56:3433)
  • [6] -, Singular perturbations for partial differential equations, Arch. Rational Mech. Anal. 29 (1968), 289-303. MR 37 #1754. MR 0226164 (37:1754)
  • [7] W. M. Greenlee, Rate of convergence in singular perturbations, Ann. Inst. Fourier (Grenoble) 18 (1968), fasc. 2, 135-191, (1969). MR 39 #3133. MR 0241795 (39:3133)
  • [8] E. Hille, Analytic function theory. Vol. II, Introduction to Higher Math., Blaisdell, Waltham, Mass., 1962. MR 34 #1490. MR 0201608 (34:1490)
  • [9] D. Huet, Singular perturbations of elliptic problems, Ann. Mat. Pura Appl. (4) 95 (1973), 77-114. MR 48 #6631. MR 0328289 (48:6631)
  • [10] F. John, The transition from thin plate to membrane in the case of a plate under uniform tension, Continuum Mechanics and Related Problems of Analysis, Moscow, 1972. MR 0381431 (52:2328)
  • [11] L. Landau and E. Lifschitz, Continuum mechanics, OGIZ, Moscow, 1948; English transl., Pergamon Press, London; Addison-Wesley, Reading, Mass., 1958. MR 10, 582; 19, 1230.
  • [12] J.-L. Lions, Perturbations singulières dans les problèmes aux limites et en contrôles optimal, Lecture Notes in Math., Springer-Verlag, Berlin, 1973. MR 0600331 (58:29078)
  • [13] M. I. Višik and V. V. Grušin, Boundary value problems for elliptic equations degenerate on the boundary of a domain, Mat. Sb. 80 (122) (1969), 455-491 = Math. USSR Sb. 9 (1969), 423-454. MR 41 #2212. MR 0257562 (41:2212)
  • [14] M. I. Višik and L. A. Ljusternik, Regular degeneration and boundary layer for linear differential equations with a small parameter, Uspehi Mat. Nauk 12 (1957), no. 5 (77), 3-122; English transl., Amer. Math. Soc. Transl. (2) 20 (1962), 239-364. MR 20 #2539; 25 #322.
  • [15] J. J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure Appl. Math. 20 (1967), 797-872. MR 38 #2437. MR 0234118 (38:2437)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35B25

Retrieve articles in all journals with MSC: 35B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0412571-6
Keywords: Singular perturbations, higher order elliptic boundary value problems, thin plates and membranes
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society