An inequality for positive definite Volterra kernels

Author:
Olof J. Staffans

Journal:
Proc. Amer. Math. Soc. **58** (1976), 205-210

MSC:
Primary 45M05; Secondary 45D05

MathSciNet review:
0500049

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We deduce an inequality satisfied by certain positive definite Volterra kernels. This inequality yields a new theorem on the asymptotic behavior of the bounded solutions of a Volterra equation.

**[1]**A. Halanay,*On the asymptotic behavior of the solutions of an integro-differential equation*, J. Math. Anal. Appl**10**(1965), 319–324. MR**0176304****[2]**Stig-Olof Londen,*On a nonlinear Volterra integral equation*, J. Differential Equations**14**(1973), 106–120. MR**0340995****[3]**Stig-Olof Londen,*On the variation of the solutions of a nonlinear integral equation*, J. Math. Anal. Appl.**52**(1975), no. 3, 430–449. MR**0420177****[4]**-,*On an integral equation in a Hilbert space*, Univ. of Wisconsin, MRC Technical Summary Report 1527, 1975.**[5]**R. C. MacCamy and J. S. W. Wong,*Stability theorems for some functional equations*, Trans. Amer. Math. Soc.**164**(1972), 1–37. MR**0293355**, 10.1090/S0002-9947-1972-0293355-X**[6]**J. A. Nohel and D. F. Shea,*Frequency domain methods for Volterra equations*, Advances in Math.**22**(1976), no. 3, 278–304. MR**0500024****[7]**Olof J. Staffans,*Nonlinear Volterra integral equations with positive definite kernels*, Proc. Amer. Math. Soc.**51**(1975), 103–108. MR**0370081**, 10.1090/S0002-9939-1975-0370081-8**[8]**Olof J. Staffans,*Positive definite measures with applications to a Volterra equation*, Trans. Amer. Math. Soc.**218**(1976), 219–237. MR**0458086**, 10.1090/S0002-9947-1976-0458086-5**[9]**Olof J. Staffans,*Tauberian theorems for a positive definite form, with applications to a Volterra equation*, Trans. Amer. Math. Soc.**218**(1976), 239–259. MR**0422936**, 10.1090/S0002-9947-1976-0422936-9**[10]**Olof J. Staffans,*On the asymptotic spectra of the bounded solutions of a nonlinear Volterra equation*, J. Differential Equations**24**(1977), no. 3, 365–382. MR**0463855**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
45M05,
45D05

Retrieve articles in all journals with MSC: 45M05, 45D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1976-0500049-0

Article copyright:
© Copyright 1976
American Mathematical Society