Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On a covering property of convex sets

Author: H. Groemer
Journal: Proc. Amer. Math. Soc. 59 (1976), 346-352
MSC: Primary 52A45
MathSciNet review: 0412970
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \{ {K_1},\;{K_2}, \ldots \} $ be a class of compact convex subsets of euclidean $ n$-space with the property that the set of their diameters is bounded. It is shown that the sets $ {K_i}$ can be rearranged by the application of rigid motions so as to cover the total space if and only if the sum of the volumes of all the sets $ {K_i}$ is infinite. Also, some statements regarding the densities of such coverings are proved.

References [Enhancements On Off] (What's this?)

  • [1] Gulbank D. Chakerian, Covering space with convex bodies, The geometry of metric and linear spaces (Proc. Conf., Michigan State Univ., East Lansing, Mich., 1974) Springer, Berlin, 1975, pp. 187–193. Lecture Notes in Math., Vol. 490. MR 0407722
  • [2] G. D. Chakerian and H. Groemer, On classes of convex sets that permit plane coverings, Israel J. Math. 19 (1974), 305–312. MR 0367818
  • [3] Helmut Groemer, Existenzsätze für Lagerungen im Euklidischen Raum, Math. Z. 81 (1963), 260–278 (German). MR 0163222
  • [4] H. Hadwiger, Volumschätzung für die einen Eikörper überdeckenden und unterdeckenden Parallelotope, Elem. Math. 10 (1955), 122–124 (German). MR 0077154
  • [5] A. Kosiński, A proof of an Auerbach-Banach-Mazur-Ulam theorem on convex bodies, Colloq. Math. 4 (1957), 216–218. MR 0086324

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 52A45

Retrieve articles in all journals with MSC: 52A45

Additional Information

Keywords: Convex set, covering, density
Article copyright: © Copyright 1976 American Mathematical Society