Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a covering property of convex sets


Author: H. Groemer
Journal: Proc. Amer. Math. Soc. 59 (1976), 346-352
MSC: Primary 52A45
DOI: https://doi.org/10.1090/S0002-9939-1976-0412970-2
MathSciNet review: 0412970
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \{ {K_1},\;{K_2}, \ldots \} $ be a class of compact convex subsets of euclidean $ n$-space with the property that the set of their diameters is bounded. It is shown that the sets $ {K_i}$ can be rearranged by the application of rigid motions so as to cover the total space if and only if the sum of the volumes of all the sets $ {K_i}$ is infinite. Also, some statements regarding the densities of such coverings are proved.


References [Enhancements On Off] (What's this?)

  • [1] G. D. Chakerian, Covering space with convex bodies, The Geometry of Metric and Linear Spaces (Michigan, 1974), Lecture Notes in Math., vol. 490, Springer-Verlag, Berlin and New York, 1975, pp. 187-193. MR 0407722 (53:11493)
  • [2] G. D. Chakerian and H. Groemer, On classes of convex sets that permit plane coverings, Israel J. Math. 19 (1974), 305-312. MR 0367818 (51:4060)
  • [3] H. Groemer, Existenzsätze für Lagerungen im Euklidischen Raum, Math. Z. 81 (1963), 260-278. MR 29 #525. MR 0163222 (29:525)
  • [4] H. Hadwiger, Volumschätzung für die einen Eikörper überdeckenden und unterdeckenden Parallelotope, Elem. Math. 10 (1955), 122-124. MR 17, 998. MR 0077154 (17:998h)
  • [5] A. Kosiński, A proof of an Auerbach-Banach-Mazur-Ulam theorem on convex bodies, Colloq. Math. 4 (1957), 216-218. MR 19, 165. MR 0086324 (19:165a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 52A45

Retrieve articles in all journals with MSC: 52A45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0412970-2
Keywords: Convex set, covering, density
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society