Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A characterization of Lipschitz classes on finite dimensional groups

Author: Walter R. Bloom
Journal: Proc. Amer. Math. Soc. 59 (1976), 297-304
MSC: Primary 41A65; Secondary 43A70
MathSciNet review: 0417654
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An analogue of a theorem of S. N. Bernstein is developed for certain metric locally compact abelian groups. This, together with a corresponding Jackson-type theorem, gives a characterisation in terms of their Fourier transforms of the Lipschitz functions defined on a compact abelian group with finite topological dimension.

References [Enhancements On Off] (What's this?)

  • [1] Walter R. Bloom, A characterisation of Lipschitz classes on 0-dimensional groups, Proc. Amer. Math. Soc. 53 (1975), 149-154. MR 0383000 (52:3882)
  • [2] -, Bernstein's inequality for locally compact Abelian groups, J. Austral. Math. Soc. 17 (1974), 88-101. MR 50 #893. MR 0348395 (50:893)
  • [3] -, Jackson's theorem for finite products and homomorphic images of locally compact abelian groups, Bull. Austral. Math. Soc. 12 (1975), 301-309. MR 0372502 (51:8709)
  • [4] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Vols. I, II, Die Grundlehren der math. Wissenschaften, Bände 115, 152, Springer-Verlag, New York and Berlin, 1963, 1970. MR 28 #158; 41 #7378; erratum, 42, p. 1825. MR 551496 (81k:43001)
  • [5] P. L. Walker, Lipschitz classes on finite dimensional groups, Proc. Cambridge Philos. Soc. 66 (1969), 31-38. MR 39 #1912. MR 0240565 (39:1912)
  • [6] A. Zygmund, Trigonometric series, Vols. I, II, 2nd ed., Cambridge Univ. Press, New York and London, 1968. MR 38 #4882. MR 0236587 (38:4882)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A65, 43A70

Retrieve articles in all journals with MSC: 41A65, 43A70

Additional Information

Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society