On odd dimensional surgery with finite fundamental group

Author:
Jean-Claude Hausmann

Journal:
Proc. Amer. Math. Soc. **62** (1977), 199-205

MSC:
Primary 57D65

MathSciNet review:
0433473

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: One proves that, for any finite group *G* and homomorphism , the natural homomorphism between Wall surgery groups is identically zero. Some results concerning the exponent of are deduced.

**[Bak]**Anthony Bak,*Odd dimension surgery groups of odd torsion groups vanish*, Topology**14**(1975), no. 4, 367–374. MR**0400263****[Bak2]**-,*The computation of surgery groups of finite groups with abelian 2-hyperelementary*, Algebraic*K*-theory, Lecture Notes in Math., Springer, Berlin and New York, vol. 551, pp. 384-409.**[Ba]**Hyman Bass,*Unitary algebraic 𝐾-theory*, Algebraic K-theory, III: Hermitian K-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 57–265. Lecture Notes in Math., Vol. 343. MR**0371994****[CS]**Sylvain E. Cappell and Julius L. Shaneson,*The codimension two placement problem and homology equivalent manifolds*, Ann. of Math. (2)**99**(1974), 277–348. MR**0339216****[C]**Francis X. Connolly,*Linking numbers and surgery*, Topology**12**(1973), 389–409. MR**0334245****[D]**Andreas W. M. Dress,*Induction and structure theorems for orthogonal representations of finite groups*, Ann. of Math. (2)**102**(1975), no. 2, 291–325. MR**0387392****[G]**R. M. Geist,*Semicharacteristic detection of obstructions to rational homotopy equivalence*, Notices Amer. Math. Soc.**21**(1974), A-451. Abstract #74T-G72.**[H]**Marshall Hall Jr.,*The theory of groups*, The Macmillan Co., New York, N.Y., 1959. MR**0103215****[KM]**Michel A. Kervaire and John W. Milnor,*Groups of homotopy spheres. I*, Ann. of Math. (2)**77**(1963), 504–537. MR**0148075****[P1]**William Pardon,*Local surgery and applications to the theory of quadratic forms*, Bull. Amer. Math. Soc.**82**(1976), no. 1, 131–133. MR**0397751**, 10.1090/S0002-9904-1976-13992-4**[P2]**William Pardon,*The exact sequence of a localization for Witt groups*, Algebraic 𝐾-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), Springer, Berlin, 1976, pp. 336–379. Lecture Notes in Math., Vol. 551. MR**0486068****[PP]**D. S. Passman and Ted Petrie,*Surgery with coefficients in a field*, Ann. of Math. (2)**95**(1972), 385–405. MR**0310913****[Wl]**C. T. C. Wall,*Surgery of non-simply-connected manifolds*, Ann. of Math. (2)**84**(1966), 217–276. MR**0212827****[W2]**C. T. C. Wall,*Surgery on compact manifolds*, Academic Press, London-New York, 1970. London Mathematical Society Monographs, No. 1. MR**0431216****[W3]**C. T. C. Wall,*Classification of Hermitian Forms. VI. Group rings*, Ann. of Math. (2)**103**(1976), no. 1, 1–80. MR**0432737**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57D65

Retrieve articles in all journals with MSC: 57D65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1977-0433473-6

Article copyright:
© Copyright 1977
American Mathematical Society