Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On odd dimensional surgery with finite fundamental group


Author: Jean-Claude Hausmann
Journal: Proc. Amer. Math. Soc. 62 (1977), 199-205
MSC: Primary 57D65
DOI: https://doi.org/10.1090/S0002-9939-1977-0433473-6
MathSciNet review: 0433473
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: One proves that, for any finite group G and homomorphism $ \omega :G \to {\mathbf{Z}}/2{\mathbf{Z}}$, the natural homomorphism $ L_{2k + 1}^h({\mathbf{Z}}G,\omega ) \to L_{2k + 1}^h({\mathbf{Q}}G,\omega )$ between Wall surgery groups is identically zero. Some results concerning the exponent of $ L_{2k + 1}^h({\mathbf{Z}}G;\omega )$ are deduced.


References [Enhancements On Off] (What's this?)

  • [Bak] A. Bak, Odd dimension surgery groups of odd torsion groups vanish, Topology 14 (1975), 367-374. MR 0400263 (53:4098)
  • [Bak2] -, The computation of surgery groups of finite groups with abelian 2-hyperelementary, Algebraic K-theory, Lecture Notes in Math., Springer, Berlin and New York, vol. 551, pp. 384-409.
  • [Ba] H. Bass, Unitary algebraic K-theory, Proc. Conf. Seattle Res. Center, Batelle Memorial Inst., 1972, Lecture Notes in Math., vol. 343, Springer-Verlag, Berlin and New York, 1973. MR 51 #8211. MR 0371994 (51:8211)
  • [CS] S. Cappell and J. Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. (2) 99 (1974), 277-348. MR 49 #3978. MR 0339216 (49:3978)
  • [C] F. Connolly, Linking numbers and surgery, Topology 12 (1973), 389-409. MR 0334245 (48:12564)
  • [D] A. Dress, Induction and structure theorem for orthogonal representations of finite groups, Ann. of Math. (2) 102 (1975), 291-326. MR 0387392 (52:8235)
  • [G] R. M. Geist, Semicharacteristic detection of obstructions to rational homotopy equivalence, Notices Amer. Math. Soc. 21 (1974), A-451. Abstract #74T-G72.
  • [H] M. Hall, The theory of groups, Macmillan, New York, 1959. MR 21 # 1996. MR 0103215 (21:1996)
  • [KM] M. Kervaire and J. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537. MR 26 #5584. MR 0148075 (26:5584)
  • [P1] W. Pardon, Local surgery and application to the theory of quadratic forms, Bull. Amer. Math. Soc. 82 (1976), 131-134. MR 0397751 (53:1609)
  • [P2] -, The exact sequence of a localization for Witt groups, Algebraic K-Theory, Lecture Notes in Math., vol. 551, Springer, Berlin and New York, pp. 303-310. MR 0486068 (58:5856)
  • [PP] D. Passman and T. Petrie, Surgery with coefficients in a field, Ann. of Math. (2) 95 (1972), 385-405. MR 46 #10011. MR 0310913 (46:10011)
  • [Wl] C. T. C. Wall, Surgery of non-simply-connected manifolds, Ann. of Math. (2) 84 (1966), 217-276. MR 35 #3692. MR 0212827 (35:3692)
  • [W2] -, Surgery on compact manifolds, Academic Press, New York, 1970. MR 0431216 (55:4217)
  • [W3] -, Classification of hermitian forms. VI. Group rings, Ann. of Math. (2) 103 (1976), 1-80. MR 0432737 (55:5720)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57D65

Retrieve articles in all journals with MSC: 57D65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0433473-6
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society