Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Congruence function fields of genus $ g$ and class number $ g+1$

Author: James R. C. Leitzel
Journal: Proc. Amer. Math. Soc. 64 (1977), 20-24
MSC: Primary 12A90; Secondary 12A50
MathSciNet review: 0437503
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Congruence function fields of genus g and class number $ g + 1$ are fully classified. As an application we determine explicitly the real quadratic function fields with this property and of odd characteristic for which the ring of integers is a unique factorization domain.

References [Enhancements On Off] (What's this?)

  • [1] E. Artin, Quadratische Körper in Gebiete der hoheren Kongruenzen. I, II, Math. Z. 19 (1924), 153-246. MR 1544651
  • [2] M. Eichler, Introduction to the theory of algebraic numbers and functions, Academic Press, New York, 1966. MR 35 #160. MR 0209258 (35:160)
  • [3] M. L. Madan, Note on a problem of S. Chowla, J. Number Theory 2 (1970), 279-281. MR 42 #3056. MR 0268157 (42:3056)
  • [4] M. L. Madan and C. S. Queen, Algebraic function fields of class number one, Acta Arith. 20 (1972), 423-432. MR 46 #5287. MR 0306160 (46:5287)
  • [5] M. L. Madan and D. J. Madden, The exponent of class group in congruence function fields, Acta Arith. 32 (1976). MR 0439820 (55:12702)
  • [6] F. K. Schmidt, Analytische Zahlentheorie in Körpern der Characteristik p, Math. Z. 33 (1931), 1-32. MR 1545199

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12A90, 12A50

Retrieve articles in all journals with MSC: 12A90, 12A50

Additional Information

Keywords: Class number, congruence function field, real quadratic function field
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society