Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Relative $ S$-invariants


Author: Robert O. Stanton
Journal: Proc. Amer. Math. Soc. 65 (1977), 221-224
MSC: Primary 13C05; Secondary 13F99
DOI: https://doi.org/10.1090/S0002-9939-1977-0447206-0
MathSciNet review: 0447206
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Warfield has defined the concept of a $ {T^\ast}$-module over a discrete valuation ring and has proved a classification theorem for these modules. In this paper, the invariant S defined by the author is extended. This allows a generalization of the classification theorem of Warfield.


References [Enhancements On Off] (What's this?)

  • [1] L. Fuchs, Infinite abelian groups. II, Academic Press, New York, 1973. MR 0349869 (50:2362)
  • [2] R. O. Stanton, An invariant for modules over a discrete valuation ring, Proc. Amer. Math. Soc. 49 (1975), 51-54. MR 0360572 (50:13020)
  • [3] E. A. Walker, Ulm's theorem for totally projective groups, Proc. Amer. Math. Soc. 37 (1973), 387-392. MR 0311805 (47:367)
  • [4] R. B. Warfield, Jr., Classification theorems for p-groups and modules over a discrete valuation ring, Bull. Amer. Math. Soc. 78 (1972), 88-92. MR 45 #378. MR 0291284 (45:378)
  • [5] -, Classification theory of abelian groups. II: Local Theory (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13C05, 13F99

Retrieve articles in all journals with MSC: 13C05, 13F99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0447206-0
Keywords: Discrete valuation ring, $ {T^\ast}$-module
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society