Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A unique continuation theorem involving a degenerate parabolic operator


Author: Alan V. Lair
Journal: Proc. Amer. Math. Soc. 66 (1977), 41-45
MSC: Primary 35K10
DOI: https://doi.org/10.1090/S0002-9939-1977-0466968-X
MathSciNet review: 0466968
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the degenerate parabolic operator $ L[u] = \gamma B[u] - {u_t}$ on a domain $ D = \Omega \times (0,T]$ where $ B[u] = \Sigma _{i,j = 1}^n{({a_{ij}}(x){u_{{x_j}}})_{{x_i}}}$ and $ \gamma $ is an arbitrary complex number. Classically, $ \gamma = 1$ and the real-valued matrix $ ({a_{ij}})$ is positive definite. We assume $ ({a_{ij}})$ is a real-valued symmetric matrix but not necessarily definite. We prove that any complex-valued function u which satisfies the inequality $ \vert L[u]\vert \leqslant c\vert u\vert$ for some nonnegative constant c and vanishes initially as well as on the boundary of $ \Omega $ must vanish on all of D. The theorem is particularly useful in studying uniqueness for many systems which are not parabolic.


References [Enhancements On Off] (What's this?)

  • [1] J. R. Cannon, W. T. Ford and A. V. Lair, Quasilinear parabolic systems, J. Differential Equations 20 (1976), 441-472. MR 53 #1028. MR 0397168 (53:1028)
  • [2] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 31 #6062. MR 0181836 (31:6062)
  • [3] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, R. I., 1968. MR 39 #3159a,b.
  • [4] M. Lees and M. H. Protter, Unique continuation for parabolic differential equations and inequalities, Duke Math. J. 28 (1961), 369-382. MR 0140840 (25:4254)
  • [5] H. Yamabe, A unique continuation theorem of a diffusion equation, Ann. of Math. 69 (1959), 462-466. MR 21 #206. MR 0101395 (21:206)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35K10

Retrieve articles in all journals with MSC: 35K10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0466968-X
Keywords: Degenerate parabolic operator, unique continuation
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society