Sticky arcs in

Author:
David G. Wright

Journal:
Proc. Amer. Math. Soc. **66** (1977), 181-182

MSC:
Primary 57A15; Secondary 55A35

DOI:
https://doi.org/10.1090/S0002-9939-1977-0515648-0

MathSciNet review:
0515648

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *A* and *B* be arcs in , Euclidean 3-space. Then *A* can be ``slipped'' off *B*; i.e., there exists a homeomorphism of onto itself, arbitrarily close to the identity, such that . The purpose of this note is to show that arcs in do not always enjoy this property. The examples depend heavily on a recent result of McMillan.

**[1]**S. Armentrout,*Decompositions of**with a compact*0-*dimensional set of nondegenerate elements*, Trans. Amer. Math. Soc.**123**(1966), 165-177. MR**0195074 (33:3279)****[2]**M. Brown,*A proof of the generalized Schoenflies theorem*, Bull. Amer. Math. Soc.**66**(1960), 74-76. MR**0117695 (22:8470b)****[3]**R. D. Edwards and R. C. Kirby,*Deformations of spaces of imbeddings*, Ann. of Math. (2)**93**(1971), 63-88. MR**0283802 (44:1032)****[4]**D. R. McMillan, Jr.,*An arc in a PL n-manifold with no neighborhood that embeds in*Michigan Math. J. (to appear). MR**0482772 (58:2825)****[5]**-,*A criterion for cellularity in a manifold*. II Trans. Amer. Math. Soc.**126**(1967), 217-224. MR**0208583 (34:8392)****[6]**C. L. Seebeck, III,*Collaring an*-*manifold in an n-manifold*, Trans. Amer. Math. Soc.**148**(1970), 63-68. MR**0258045 (41:2692)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57A15,
55A35

Retrieve articles in all journals with MSC: 57A15, 55A35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1977-0515648-0

Article copyright:
© Copyright 1977
American Mathematical Society