Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Multipliers on compact groups

Author: Ian Inglis
Journal: Proc. Amer. Math. Soc. 70 (1978), 151-155
MSC: Primary 43A22; Secondary 42A18
MathSciNet review: 0477606
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give some sufficient conditions for a function on a compact totally disconnected abelian group to be an $ {L^p}$ Fourier multiplier.

References [Enhancements On Off] (What's this?)

  • [1] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and multiplier theory, Springer-Verlag, Berlin and New York, 1977. MR 0618663 (58:29760)
  • [2] G. I. Gaudry and I. R. Inglis, Weak-strong convolution operators on certain disconnected groups, Studia Math. (to appear). MR 524018 (80f:43012)
  • [3] Edwin Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. I, Springer-Verlag, Berlin, 1963. MR 28 #158. MR 551496 (81k:43001)
  • [4] Sadahiro Saeki, Translation invariant operators on groups, Tôhoku Math. J. 22 (1970), 409-419. MR 43 #815. MR 0275057 (43:815)
  • [5] René Spector, Sur la structure locale des groupes abéliens localement compacts, Bull. Soc. Math. France Suppl. Mém. 24 (1970). MR 44 #729. MR 0283498 (44:729)
  • [6] E. M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., no. 32, Princeton Univ. Press, Princeton, N.J., 1971. MR 46 #4102. MR 0304972 (46:4102)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A22, 42A18

Retrieve articles in all journals with MSC: 43A22, 42A18

Additional Information

Keywords: Compact abelian group, Fourier multiplier
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society