Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An algebra of functions


Author: Björn E. J. Dahlberg
Journal: Proc. Amer. Math. Soc. 74 (1979), 39-43
MSC: Primary 31B99
DOI: https://doi.org/10.1090/S0002-9939-1979-0521870-1
MathSciNet review: 521870
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is established that the space of logarithmic potentials of $ {H^1}$-functions is closed under multiplication.


References [Enhancements On Off] (What's this?)

  • [1] R. Bagby, Lebesgue spaces of parabolic potentials, Illinois J. Math. 15 (1971), 610-635. MR 0291792 (45:883)
  • [2] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. MR 0447954 (56:6264)
  • [3] C. Fefferman and E. M. Stein, $ {H^p}$ spaces of several variables, Acta Math. 129 (1972), 137-193. MR 0447953 (56:6263)
  • [4] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. MR 0131498 (24:A1348)
  • [5] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Series, No. 30, Princeton Univ. Press, Princeton, N. J., 1970. MR 0290095 (44:7280)
  • [6] R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031-1060. MR 0215084 (35:5927)
  • [7] -, A note on Sobolev algebras, Proc. Amer. Math. Soc. 29 (1971), 205-207. MR 0275148 (43:905)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31B99

Retrieve articles in all journals with MSC: 31B99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0521870-1
Keywords: Logarithmic potentials, $ {H^1}$-functions, atoms, Sobolev inequalities
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society