Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hurewicz isomorphism theorem for Steenrod homology


Authors: Y. Kodama and A. Koyama
Journal: Proc. Amer. Math. Soc. 74 (1979), 363-367
MSC: Primary 55N07; Secondary 54F43, 55Q07, 55Q99
DOI: https://doi.org/10.1090/S0002-9939-1979-0524318-6
MathSciNet review: 524318
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a pointed compactum (X, x), a natural homomorphism $ {\xi _n}$ from the Quigley's approaching group $ {\underline{\underline \pi } _n}(X,x)$ to the Steenrod homology group $ ^s{H_{n + 1}}(X)$ is defined. A shape theoretical condition under which $ {\xi _n}$ is an isomorphism is obtained. For every pointed $ {S^n}$-like continuum (X, x), $ {\xi _n}$ is an isomorphism for $ n \ne 2$ and $ {\xi _2}$ is an isomorphism if and only if X is movable.


References [Enhancements On Off] (What's this?)

  • [1] K. Borsuk, On the n-movability, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 859-864. MR 0313988 (47:2540)
  • [2] -, Theory of shape, PWN-Polish Scientific Publishers, Warsaw, 1975. MR 0418088 (54:6132)
  • [3] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin and New York, 1972. MR 0365573 (51:1825)
  • [4] D. A. Edwards and H. M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Math., vol. 542, Springer-Verlag, Berlin and New York, 1976. MR 0428322 (55:1347)
  • [5] J. Grossman, Homotopy classes of maps between pro-spaces, Michigan Math. J. 21 (1974), 355-362. MR 0367984 (51:4226)
  • [6] P. J. Hilton, An introduction to homotopy theory, Cambridge Univ. Press, London and New York, 1953. MR 0056289 (15:52c)
  • [7] Y. Kodama and T. Watanabe, A note on Borsuk's n-movability, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 289-294. MR 0346737 (49:11462)
  • [8] A. Koyama, J. Ono and K. Tsuda, An algebraic characterization of pointed $ {S^n}$-movability, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 1249-1252. MR 0494097 (58:13028)
  • [9] K. Kuperberg, An isomorphism theorem of the Hurewicz type in Borsuk's theory of shape, Fund. Math. 77 (1972), 21-32. MR 0324692 (48:3042)
  • [10] S. Mardešić and J. Segal, Movable compacta and ANR-systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 649-654. MR 0283796 (44:1026)
  • [11] J. Milnor, On the Steenrod homology, Mimeographed notes, Berkeley, 1960.
  • [12] S. Nowak, On the fundamental dimension of approximatively 1-connected compacta, Fund. Math. 89 (1975), 61-79. MR 0377832 (51:14001)
  • [13] J. B. Quigley, An exact sequence from the nth to the $ (n - 1)$-st fundamental group, Fund. Math. 77 (1973), 195-210. MR 0331379 (48:9712)
  • [14] N. E. Steenrod, Regular cycles of compact metric spaces, Ann. of Math. 41 (1940), 833-851. MR 0002544 (2:73c)
  • [15] T. Watanabe, On a problem of Y. Kodama, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 981-986. MR 0494096 (58:13027)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55N07, 54F43, 55Q07, 55Q99

Retrieve articles in all journals with MSC: 55N07, 54F43, 55Q07, 55Q99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0524318-6
Keywords: Shape, movability, Steenrod homology, Hurewicz isomorphism theorem
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society