Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Hurewicz isomorphism theorem for Steenrod homology


Authors: Y. Kodama and A. Koyama
Journal: Proc. Amer. Math. Soc. 74 (1979), 363-367
MSC: Primary 55N07; Secondary 54F43, 55Q07, 55Q99
DOI: https://doi.org/10.1090/S0002-9939-1979-0524318-6
MathSciNet review: 524318
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a pointed compactum (X, x), a natural homomorphism $ {\xi _n}$ from the Quigley's approaching group $ {\underline{\underline \pi } _n}(X,x)$ to the Steenrod homology group $ ^s{H_{n + 1}}(X)$ is defined. A shape theoretical condition under which $ {\xi _n}$ is an isomorphism is obtained. For every pointed $ {S^n}$-like continuum (X, x), $ {\xi _n}$ is an isomorphism for $ n \ne 2$ and $ {\xi _2}$ is an isomorphism if and only if X is movable.


References [Enhancements On Off] (What's this?)

  • [1] K. Borsuk, On the 𝑛-movability, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 859–864 (English, with Russian summary). MR 0313988
  • [2] Karol Borsuk, Theory of shape, PWN—Polish Scientific Publishers, Warsaw, 1975. Monografie Matematyczne, Tom 59. MR 0418088
  • [3] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
  • [4] David A. Edwards and Harold M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Mathematics, Vol. 542, Springer-Verlag, Berlin-New York, 1976. MR 0428322
  • [5] Jerrold W. Grossman, Homotopy classes of maps between pro-spaces, Michigan Math. J. 21 (1974), 355–362 (1975). MR 0367984
  • [6] P. J. Hilton, An introduction to homotopy theory, Cambridge Tracts in Mathematics and Mathematical Physics, no. 43, Cambridge, at the University Press, 1953. MR 0056289
  • [7] Y. Kodama and T. Watanabe, A note on Borsuk’s 𝑛-movability, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 289–294 (English, with Russian summary). MR 0346737
  • [8] Akira Koyama, Jin Ono, and Kōichi Tsuda, An algebraic characterization of pointed 𝑆ⁿ-movability, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 12, 1249–1252 (English, with Russian summary). MR 0494097
  • [9] Krystyna Kuperberg, An isomorphism theorem of the Hurewicz-type in Borsuk’s theory of shape, Fund. Math. 77 (1972), no. 1, 21–32. MR 0324692
  • [10] S. Mardešić and J. Segal, Movable compacta and 𝐴𝑁𝑅-systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 649–654 (English, with Loose Russian summary). MR 0283796
  • [11] J. Milnor, On the Steenrod homology, Mimeographed notes, Berkeley, 1960.
  • [12] Sławomir Nowak, On the fundamental dimension of approximatively 1-connected compacta, Fund. Math. 89 (1975), no. 1, 61–79. MR 0377832
  • [13] J. Brendan Quigley, An exact sequence from the 𝑛th to the (𝑛-1)-st fundamental group, Fund. Math. 77 (1973), no. 3, 195–210. MR 0331379
  • [14] N. E. Steenrod, Regular cycles of compact metric spaces, Ann. of Math. (2) 41 (1940), 833–851. MR 0002544, https://doi.org/10.2307/1968863
  • [15] Tadashi Watanabe, On a problem of Y. Kodama, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 10, 981–985 (English, with Russian summary). MR 0494096

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55N07, 54F43, 55Q07, 55Q99

Retrieve articles in all journals with MSC: 55N07, 54F43, 55Q07, 55Q99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0524318-6
Keywords: Shape, movability, Steenrod homology, Hurewicz isomorphism theorem
Article copyright: © Copyright 1979 American Mathematical Society