Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



An extension of the Hardy-Littlewood inequality

Authors: M. K. Kwong and A. Zettl
Journal: Proc. Amer. Math. Soc. 77 (1979), 117-118
MSC: Primary 26D15
MathSciNet review: 539642
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Hardy-Littlewood inequality is extended from $ {L^2}$ to $ L_w^2$ where w is any positive nondecreasing function.

References [Enhancements On Off] (What's this?)

  • [1] R. Beals, Topics in operator theory, Univ. of Chicago Press, Chicago, Ill., 1971. MR 0270172 (42:5065)
  • [2] V. N. Gabušin, Inequalities for norms of a function and its derivatives in $ {L^p}$ metrics, Mat. Zametki 1 (1967), 291-298. (Russian) MR 0206700 (34:6518)
  • [3] G. H. Hardy, J. E. Littlewood and G. Polyá, Inequalities, Cambridge Univ. Press, Cambridge, 1952. MR 0046395 (13:727e)
  • [4] T. Kato, On an inequality of Hardy, Littlewood and Polyá, Advances in Math. 7 (1971), 217-218. MR 0293454 (45:2531)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26D15

Retrieve articles in all journals with MSC: 26D15

Additional Information

Keywords: Landau, Hardy-Littlewood inequality, norm inequality for derivatives
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society