Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Essentially Hermitian operators in $ B(L\sb{p})$


Authors: G. D. Allen, D. A. Legg and J. D. Ward
Journal: Proc. Amer. Math. Soc. 80 (1980), 71-77
MSC: Primary 47B15
DOI: https://doi.org/10.1090/S0002-9939-1980-0574511-X
MathSciNet review: 574511
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that on $ {L_p}[0,1]$ all bounded linear operators which are Hermitian in the Calkin algebra $ B({L_p})/C({L_p})$, must be of the form ``Hermitian plus compact". That is, essentially Hermitian operators have the form, real multiplier plus compact.


References [Enhancements On Off] (What's this?)

  • [1] G. D. Allen and J. D. Ward, Hermitian liftings in $ B({l_p})$, J. Operator Theory 1 (1979), 27-36. MR 526288 (80b:47040)
  • [2] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, Cambridge Univ. Press, Cambridge, Mass., 1973. MR 0288583 (44:5779)
  • [3] -, Numerical ranges. II, Cambridge Univ. Press, Cambridge, Mass., 1973. MR 0442682 (56:1063)
  • [4] N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1957.
  • [5] J. Hennefeld, The Arens product and an imbedding theorem, Pacific J. Math. 29 (1969), 551-563. MR 0251547 (40:4774)
  • [6] B. E. Johnson and S. R. Parrott, Operators commuting with a von Neumann algebra modulo the set of compact operators, J. Functional Analysis 11 (1972), 39-61. MR 0341119 (49:5869)
  • [7] S. Sakai, $ {C^ \ast }$-algebras and $ {W^ \ast }$-algebras, Springer-Verlag, New York, 1971. MR 0442701 (56:1082)
  • [8] J. G. Stampfli, Compact perturbations, normed eigenvalues and a problem of Salinas, J. London Math. Soc. 2 (1974), 165-175. MR 0365196 (51:1449)
  • [9] J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. 20 (1968), 417-424. MR 0243352 (39:4674)
  • [10] K. W. Tam, Isometries of certain function spaces, Pacific J. Math. 31 (1969), 233-246. MR 0415295 (54:3385)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B15

Retrieve articles in all journals with MSC: 47B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0574511-X
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society