Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weyl group actions and equivariant homotopy equivalence


Author: Katsuo Kawakubo
Journal: Proc. Amer. Math. Soc. 80 (1980), 172-176
MSC: Primary 57S15; Secondary 55Q50
DOI: https://doi.org/10.1090/S0002-9939-1980-0574530-3
MathSciNet review: 574530
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be a compact Lie group and $ {G_0}$ its identity component. Then we shall show that the normal representations of the corresponding fixed point components of G-homotopy equivalent manifolds are necessarily isomorphic when $ G/{G_0}$ is a Weyl group of a compact connected Lie group.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, On the groups $ J(X) - I$, Topology 2 (1963), 181-195. MR 0159336 (28:2553)
  • [2] M. F. Atiyah, Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310. MR 0131880 (24:A1727)
  • [3] M. F. Atiyah and G. B. Segal, Equivariant K-theory, University of Warwick, 1965 (mimeographed note).
  • [4] M. F. Atiyah and D. O. Tall, Group representations, $ \lambda $-rings and the J-homomorphism, Topology 8 (1969), 253-297. MR 0244387 (39:5702)
  • [5] M. Benard, On the Schur indices of characters of the exceptional Weyl groups, Ann. of Math. (2) 94 (1971), 89-107. MR 0297887 (45:6939)
  • [6] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962. MR 0144979 (26:2519)
  • [7] K. Kawakubo, G-homotopy equivalent manifolds and $ {J_G}$-homomorphism, Proc. Japan Acad. 54 (1978), 104-106. MR 0482762 (58:2815)
  • [8] -, Compact Lie group actions and fiber homotopy type, J. Math. Soc. Japan (to appear). MR 607946 (82f:57027)
  • [9] -, Equivariant homotopy equivalences of group representations, J. Math. Soc. Japan 32 (1980), 105-118. MR 554519 (82a:57034)
  • [10] -, Cancellation law for G-homotopy equivalent representations (to appear).
  • [11] T. Kondo, The characters of the Weyl group of type $ {F_4}$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 11 (1965), 145-153. MR 0185018 (32:2488)
  • [12] C. N. Lee and A. G. Wasserman, On the groups $ JO(G)$, Mem. Amer. Math. Soc. No. 159 (1975). MR 0370581 (51:6808)
  • [13] R. Schultz, On the topological classification of linear representations, Topology 16 (1977), 263-269. MR 0500964 (58:18449)
  • [14] J. P. Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1971.
  • [15] W. Specht, Eine Verallgemeinerung der symmetrischen Gruppe, Schr. Math. Sem. Berlin 1 (1932), 1-32.
  • [16] P. Traczyk, On the G-homotopy equivalence of spheres of representations, Math. Z. 161 (1978), 257-261. MR 0494094 (58:13025)
  • [17] A. Young, Quantitative substitutional analysis. IV, V, Proc. London Math. Soc. (2) 31 (1930), 253-272; 273-288.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57S15, 55Q50

Retrieve articles in all journals with MSC: 57S15, 55Q50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0574530-3
Keywords: Compact Lie groups, equivariant J-homomorphism, Weyl groups, equivariant homotopy equivalence
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society