Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Mad families and ultrafilters


Author: Martin Weese
Journal: Proc. Amer. Math. Soc. 80 (1980), 475-477
MSC: Primary 54A25; Secondary 03E35, 04A20
DOI: https://doi.org/10.1090/S0002-9939-1980-0581008-X
MathSciNet review: 581008
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For each almost disjoint family X let $ F(X) = \{ a \subseteq \omega :{\text{card}}\{ s \in X:s\backslash a\;{\text{is... ...\text{card}}\;\{ s \in X:{\text{card}}\;(s \cap a) = \omega \} = {2^\omega }\} $ . Assuming $ P({2^\omega })$ we show that for each nonprincipal ultrafilter p there exist a maximal almost disjoint family X and an almost disjoint family Y with $ F(X) = I(Y) = p$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54A25, 03E35, 04A20

Retrieve articles in all journals with MSC: 54A25, 03E35, 04A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0581008-X
Keywords: Almost disjoint family, Stone-Čech compactification, $ {2^\omega }$-point, superatomic Boolean algebra
Article copyright: © Copyright 1980 American Mathematical Society