A remarkable simple closed curve: revisited

Author:
O. G. Harrold

Journal:
Proc. Amer. Math. Soc. **81** (1981), 133-136

MSC:
Primary 57M30; Secondary 57N45

MathSciNet review:
589155

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the pathology of R. H. Fox's remarkable simple closed curve is in a sense explained below more complicated than that of some examples of the well-known Fox-Artin paper.

**[1]**R. H. Bing,*Locally tame sets are tame*, Ann. of Math. (2)**59**(1954), 145–158. MR**0061377****[2]**P. H. Doyle and J. G. Hocking,*Some results on tame disks and spheres in 𝐸³*, Proc. Amer. Math. Soc.**11**(1960), 832–836. MR**0126839**, 10.1090/S0002-9939-1960-0126839-2**[3]**Ralph H. Fox and Emil Artin,*Some wild cells and spheres in three-dimensional space*, Ann. of Math. (2)**49**(1948), 979–990. MR**0027512****[4]**R. H. Fox and O. G. Harrold,*The Wilder arcs*, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 184–187. MR**0140096****[5]**Ralph H. Fox,*A remarkable simple closed curve*, Ann. of Math. (2)**50**(1949), 264–265. MR**0030745****[6]**W. Graeub,*Die semilinearen Abbildungen*, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl.**1950**(1950), 205–272 (German). MR**0042709****[7]**O. G. Harrold Jr.,*Locally tame curves and surfaces in three-dimensional manifolds*, Bull. Amer. Math. Soc.**63**(1957), 293–305. MR**0088718**, 10.1090/S0002-9904-1957-10125-6**[8]**-,*An Additive Index Theorem for certain wildly embedded curves and surfaces*(Proc. Conf. Geometric Topology), Academic Press, New York, 1979.**[9]**Edwin E. Moise,*Affine structures in 3-manifolds. VIII. Invariance of the knot-types; local tame imbedding*, Ann. of Math. (2)**59**(1954), 159–170. MR**0061822**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57M30,
57N45

Retrieve articles in all journals with MSC: 57M30, 57N45

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1981-0589155-4

Article copyright:
© Copyright 1981
American Mathematical Society