Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some functions with a unique invariant mean


Author: Michel Talagrand
Journal: Proc. Amer. Math. Soc. 82 (1981), 253-256
MSC: Primary 28C10; Secondary 22A10, 22C05, 43A07
DOI: https://doi.org/10.1090/S0002-9939-1981-0609661-3
MathSciNet review: 609661
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In a large class of groups, we construct a function which has a unique invariant mean, but which is not Riemann-measurable.


References [Enhancements On Off] (What's this?)

  • [1] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Math. Studies, vol. 16, Van Nostrand, Princeton, N. J., 1969. MR 0251549 (40:4776)
  • [2] L. A. Rubel and A. L. Shields, Invariant subspaces of $ {L^\infty }$ and $ {H^\infty }$, J. Reine Angew. Math. 272 (1975), 32-44. MR 0370156 (51:6385)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28C10, 22A10, 22C05, 43A07

Retrieve articles in all journals with MSC: 28C10, 22A10, 22C05, 43A07


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0609661-3
Keywords: Unique invariant mean, Riemann-measurable
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society