Uniqueness of solutions of partial differential equations when the initial surface is characteristic at a point

Author:
Letitia J. Korbly

Journal:
Proc. Amer. Math. Soc. **86** (1982), 617-624

MSC:
Primary 35L15

DOI:
https://doi.org/10.1090/S0002-9939-1982-0674093-X

MathSciNet review:
674093

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Uniqueness in the Cauchy problem for hyperbolic operators degenerate at a point on the initial surface depends on values of the coefficients of the lower order terms. If the operator is doubly characteristic at the origin with respect to the line, has uniqueness for functions which are smooth enough if the coefficient of the term does not lie in a certain discrete set of numbers.

**[1]**L. Boutet de Monvel and F. Treves,*On a class of pseudodifferential operators with double characteristics*, Invent. Math.**24**(1974), 1-34. MR**0353064 (50:5550)****[2]**-,*On a class of systems of pseudodifferential operators with double characteristics*, Comm. Pure Appl. Math.**27**(1974), 59-89. MR**0350232 (50:2725)****[3]**M. S. Baouendi and C. Goulaouic,*Cauchy problems with characteristic initial surface*, Comm. Pure Appl. Math.**26**(1973), 555-575. MR**0338532 (49:3296)****[4]**A. Gilioli and F. Treves,*An example in the solvability theory of linear PDE's*, Amer. J. Math.**96**(1974), 367-385. MR**0355285 (50:7761)****[5]**L. Hormander,*Linear partial differential operators*, 3rd printing, Springer-Verlag, Berlin and New York, 1969. MR**0248435 (40:1687)****[6]**A. Menikoff,*Uniqueness of the Cauchy problem for a class of partial differential operators with double characteristics*, Indiana Univ. Math. J.**25**(1976), 1-21. MR**0399626 (53:3469)****[7]**F. Treves,*Concatenations of second order evolution equations applied to local solvability and hypoellipticity*, Comm. Pure Appl. Math.**26**(1973), 201-250. MR**0340804 (49:5554)****[8]**-,*Linear partial differential equations with constant coefficients*, Gordon & Breach, New York, 1956.**[9]**-,*A link between local solvability of pseudodifferential operators and uniqueness in the Cauchy problem*, Amer. J. Math.**94**(1972), 167-188.**[10]**-,*Discrete phenomena in uniqueness in the Cauchy problem*, Proc. Amer. Math. Soc.**46**(1974), 229-233. MR**0352679 (50:5166)****[11]**M. Protter,*The Cauchy problem for a hyperbolic second order equation*, Canad. J. Math.**6**(1954), 542-553. MR**0064269 (16:255d)****[12]**M. I. Višik and V. V. Grušin,*Elliptic pseudodifferential operators on a closed manifold which degenerate on a submanifold*, Soviet Math. Dokl.**10**(1969), 1316-1320.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35L15

Retrieve articles in all journals with MSC: 35L15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1982-0674093-X

Keywords:
Hyperbolic PDE,
Cauchy problem,
doubly characteristic

Article copyright:
© Copyright 1982
American Mathematical Society