Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Uniform $ \sigma $-additivity in spaces of Bochner or Pettis integrable functions over a locally compact group

Author: Nicolae Dinculeanu
Journal: Proc. Amer. Math. Soc. 87 (1983), 627-633
MSC: Primary 28B05; Secondary 43A20, 46G10
MathSciNet review: 687630
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ G$ is an abelian locally compact group with Haar measure $ \mu $, $ E$ is a Banach space and $ K \subset L_E^1(\mu )$, we give necessary and sufficient conditions for the set $ \left\{ {{f_{( \cdot )}}\left\vert f \right\vert d\mu ;f \in K} \right\}$ to be uniformly $ \sigma $-additive in terms of uniform convergence on $ K$, for the topology $ \sigma (L_E^1,L_{E'}^\infty )$ of convolution and translation operators. In case $ E = R$, this gives a new characterization of relatively weakly compact sets $ K \subset {L^1}$.

References [Enhancements On Off] (What's this?)

  • [1] N. Dinculeanu, Conditional expectations for general measure spaces, J. Multivariate Anal. 1 (1971), 347–364. MR 0301770
  • [2] -, Integration on locally compact spaces, Noordhoff, Leyden, 1974.
  • [3] Nicolae Dinculeanu, Uniform 𝜎-additivity and uniform convergence of conditional expectations in the space of Bochner or Pettis integrable functions, General topology and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980) Academic Press, New York-London, 1981, pp. 391–397. MR 619065
  • [4] Nicolae Dinculeanu, On Kolmogorov-Tamarkin and M. Riesz compactness criteria in function spaces over a locally compact group, J. Math. Anal. Appl. 89 (1982), no. 1, 67–85. MR 672189, 10.1016/0022-247X(82)90091-9

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28B05, 43A20, 46G10

Retrieve articles in all journals with MSC: 28B05, 43A20, 46G10

Additional Information

Keywords: Locally compact group, Harr measure, Bochner integral, Pettis integral, convolution, translation, approximate unit, uniform $ \sigma $-additivity, uniform convergence
Article copyright: © Copyright 1983 American Mathematical Society