Infinite-dimensional Jacobi matrices associated with Julia sets

Authors:
M. F. Barnsley, J. S. Geronimo and A. N. Harrington

Journal:
Proc. Amer. Math. Soc. **88** (1983), 625-630

MSC:
Primary 30D05; Secondary 33A65, 58F11

DOI:
https://doi.org/10.1090/S0002-9939-1983-0702288-6

Erratum:
Proc. Amer. Math. Soc. **92** (1984), 156.

MathSciNet review:
702288

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the Julia set associated with the polynomial , and let be the balanced -invariant measure on . Assuming is totally real, we give relations among the entries in the infinite-dimensional Jacobi matrix whose spectral measure is . The specific example is given, and some of the asymptotic properties of the entries in are presented.

**[1]**M. F. Barnsley, J. S. Geronimo and A. N. Harrington,*Orthogonal polynomials associated with invariant measures on Julia sets*, Bull. Amer. Math. Soc. (N.S.)**7**(1982), 381-384. MR**663789 (84a:42031)****[2]**-,*On the invariant sets of a family of quadratic maps*, Comm. Math. Phys. (to appear). MR**702565 (85g:58055)****[3]**-,*Geometry, electrostatic measure, and orthogonal polynomials on Julia sets for polynomials*, Ergod. Th. & Dynam. Sys. (submitted).**[4]**D. Bessis, M. L. Mehta and P. Moussa,*Orthogonal polynomials on a family of Cantor sets and the problem of iterations of quadratic mappings*, Lett. Math. Phys.**6**(1982), 123-140. MR**651127 (83g:58038)****[5]**H. Brolin,*Invariant sets under iteration of rational functions*, Ark. Mat.**6**(1965), 103-144. MR**0194595 (33:2805)****[6]**P. Fatou,*Sur les equations fonctionelles*, Bull. Soc. Math. France**47**(1919), 161-271. MR**1504787****[7]**-,*Sur les equations fonctionelles*, Bull. Soc. Math. France**48**(1920), 33-94, 208-314. MR**1504792****[8]**G. Julia,*Mémoire sur l'iteration des fonctions rationelles*, J. Math. Pures Appl.**1**(1918), 47-245.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30D05,
33A65,
58F11

Retrieve articles in all journals with MSC: 30D05, 33A65, 58F11

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0702288-6

Article copyright:
© Copyright 1983
American Mathematical Society