On partitions of plane sets into simple closed curves. II

Author:
Paul Bankston

Journal:
Proc. Amer. Math. Soc. **89** (1983), 498-502

MSC:
Primary 54B15; Secondary 57N05

Addendum:
Proc. Amer. Math. Soc. **91** (1984), 658.

MathSciNet review:
715874

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We answer some questions raised in [**1**]. In particular, we prove: (i) Let be a compact subset of the euclidean plane such that no component of separates . Then can be partitioned into simple closed curves iff is nonempty and connected. (ii) Let be any subset which is not dense in , and let be a partition of into simple closed curves. Then has the cardinality of the continuum. We also discuss an application of (i) above to the existence of flows in the plane.

**[1]**Paul Bankston,*On partitions of plane sets into simple closed curves*, Proc. Amer. Math. Soc.**88**(1983), no. 4, 691–697. MR**702301**, 10.1090/S0002-9939-1983-0702301-6**[2]**Paul Bankston and Richard J. McGovern,*Topological partitions*, General Topology Appl.**10**(1979), no. 3, 215–229. MR**546095****[3]**Anatole Beck,*Continuous flows in the plane*, Springer-Verlag, New York-Heidelberg, 1974. With the assistance of Jonathan Lewin and Mirit Lewin; Die Grundlehren der mathematischen Wissenschaften, Band 201. MR**0500869****[4]**H. Cook, handwritten notes.**[5]**S. H. Hechler,*Independence results concerning the number of nowhere dense sets necessary to cover the real line*, Acta Math. Acad. Sci. Hungar.**24**(1973), 27–32. MR**0313056****[6]**K. Kuratowski,*Topology. Vol. I*, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. MR**0217751****[7]**S. Mazurkiewicz,*Remarque sur un théorème de M. Mullikin*, Fund. Math.**6**(1924), 37-38.**[8]**M. H. A. Newman,*Elements of the topology of plane sets of points*, Second edition, reprinted, Cambridge University Press, New York, 1961. MR**0132534****[9]**Leo Zippin,*The Moore-Kline problem*, Trans. Amer. Math. Soc.**34**(1932), no. 3, 705–721. MR**1501658**, 10.1090/S0002-9947-1932-1501658-8

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54B15,
57N05

Retrieve articles in all journals with MSC: 54B15, 57N05

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1983-0715874-4

Keywords:
Topological partitions,
euclidean plane,
simple closed curves,
continuous flows

Article copyright:
© Copyright 1983
American Mathematical Society