Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Orientable products in $ \mathcal{N}$

Author: Howard Osborn
Journal: Proc. Amer. Math. Soc. 90 (1984), 167-170
MSC: Primary 57R75; Secondary 57R20
MathSciNet review: 722438
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is well known that the square $ W \times W$ of any smooth closed manifold $ W$ is cobordant to an orientable manifold. This note shows more specifically that a product $ U \times V$ of smooth closed manifolds $ U$ and $ V$ is cobordant to an orientable manifold if and only if there is a smooth closed manifold $ W$ such that $ U$ and $ V$ are both products of $ W$ by orientable manifolds.

References [Enhancements On Off] (What's this?)

  • [1] A. Dold, Erzeugende der Thomschen Algebra $ \mathcal{N}$, Math. Z. 65 (1956), 25-35. MR 18, 60. MR 0079269 (18:60c)
  • [2] J. Milnor, On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965), 223-230. MR 31 #5207. MR 0180977 (31:5207)
  • [3] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86. MR 0061823 (15:890a)
  • [4] C. T. C. Wall, Determination of the cobordism ring, Ann. of Math. (2) 72 (1960), 292-311. MR 22 #11403. MR 0120654 (22:11403)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57R75, 57R20

Retrieve articles in all journals with MSC: 57R75, 57R20

Additional Information

Keywords: Product manifolds, unoriented cobordism, orientability
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society