Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The Carathéodory distance does not define the topology

Author: Jean-Pierre Vigué
Journal: Proc. Amer. Math. Soc. 91 (1984), 223-224
MSC: Primary 32H15
MathSciNet review: 740175
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct an analytic space $ X$ such that the Carathéodory pseudo-distance $ {c_X}$ is a true distance on $ X$; however, $ {c_X}$ does not define the analytic space topology of $ X$.

References [Enhancements On Off] (What's this?)

  • [1] T. Barth, Some counterexamples concerning intrinsic distances, Proc. Amer. Math. Soc. 66 (1977), 49-53. MR 0454078 (56:12329)
  • [2] S. Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), 357-416. MR 0414940 (54:3032)
  • [3] N. Sibony, Prolongement de fonctions holomorphes et métrique de Carathéodory, Invent. Math. 29 (1975), 205-230. MR 0385164 (52:6029)
  • [4] J. P. Vigué, La distance de Carathéodory n'est pas intérieure, Math. Results 6 (1983), 100-104. MR 714663 (85d:32050)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32H15

Retrieve articles in all journals with MSC: 32H15

Additional Information

Keywords: Carathéodory distance, topology defined by the Caratheodory distance
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society