Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


A fundamental inequality in the convolution of $ L\sb{2}$ functions on the half line

Author: Saburou Saitoh
Journal: Proc. Amer. Math. Soc. 91 (1984), 285-286
MSC: Primary 30C40; Secondary 26D20
MathSciNet review: 740187
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For any positive integer $ q$ and $ {F_j} \in {L_2}(0,\infty )$, we note the inequality for the iterated convolution $ \prod _{j = 1}^{2q} * {F_j}\;$ of $ {F_j}$:

$\displaystyle \int_0^\infty {{{\left\vert {\prod\limits_{j = 1}^{2q} { * {F_j}(... ...s_{j = 1}^{2q} {\int_0^\infty {{{\left\vert {{F_j}(t)} \right\vert}^2}dt.} } } $

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C40, 26D20

Retrieve articles in all journals with MSC: 30C40, 26D20

Additional Information

PII: S 0002-9939(1984)0740187-5
Keywords: Convolution, Paley-Wiener theorem, Laplace transform
Article copyright: © Copyright 1984 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia