Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Arrangements of lines with a large number of triangles


Authors: Z. Füredi and I. Palásti
Journal: Proc. Amer. Math. Soc. 92 (1984), 561-566
MSC: Primary 52A37; Secondary 51M20
DOI: https://doi.org/10.1090/S0002-9939-1984-0760946-2
MathSciNet review: 760946
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An arrangement of lines is constructed by choosing $ n$ diagonals of the regular $ 2n$-gon. This arrangement is proved to form at least $ n(n - 3)/3$ triangular cells.


References [Enhancements On Off] (What's this?)

  • [1] S. Burr, B. Grünbaum and N. J. A. Sloane, The orchard problem, Geom. Dedicata 2 (1974), 397-424. MR 0337659 (49:2428)
  • [2] P. Erdős, Combinatorial problems in geometry, Math. Chronical 12 (1983), 35-54. MR 706025 (84i:52014)
  • [3] L. Fejes Tóth, A combinatorial problem concerning oriented lines in the plane, Amer. Math. Monthly 82 (1975), 387-389. MR 1537693
  • [4] T. Gallai, See H. S. M. Coxeter: Introduction to geometry, Wiley, New York and London, 1961. MR 0123930 (23:A1251)
  • [5] B. Grünbaum, Arrangements and spreads, Amer. Math. Soc., Providence, R.I., 1972. MR 0307027 (46:6148)
  • [6] -, Two-coloring the faces of arrangements, Period. Math. Hungar. 11 (1980), 181-185. MR 590382 (82h:51029)
  • [7] S. Hansen, Contributions to the Sylvester-Gallai-theory, Ph.D. Thesis, Copenhagen, 1981.
  • [8] H. Harborth, Two-colorings of simple arrangements, Colloq. Math. Soc. János Bolyai, Eger, 1981 (to appear). MR 818248 (87d:05077)
  • [9] L. M. Kelly and W. O. J. Moser, On the number of ordinary lines determined by $ n$ points, Canad. J. Math. 10 (1958), 210-219. MR 0097014 (20:3494)
  • [10] I. Palásti, The ratio of black and white polygons of a map generated by general straight lines, Period. Math. Hungar. 7 (1976), 91-94. MR 0438236 (55:11154)
  • [11] G. B. Purdy, Triangles in arrangements of lines, Discrete Math. 25 (1979), 157-163. MR 523090 (80h:05017)
  • [12] -, Triangles in arrangement of lines. II, Proc. Amer. Math. Soc. 79 (1980), 77-81. MR 560588 (81f:05059)
  • [13] G. B. Purdy and J. E. Wetzel, Two-coloring inequalities for Euclidean arrangements in general position, Discrete Math. 31 (1980), 53-58. MR 578060 (82a:05043)
  • [14] S. Roberts, On the figures formed by the intercepts of a system of straight lines in a plane, and on analogous relations in space of three dimensions, Proc. London Math. Soc. 19 (1887-1888), 405-422.
  • [15] G. J. Simmons, A quadrilateral-free arrangement of sixteen lines, Proc. Amer. Math. Soc. 34 (1972), 317-318. MR 0295191 (45:4259)
  • [16] -, A maximal $ 2$-arrangement of sixteen lines in the projective plane, Period. Math. Hungar. 4 (1973), 21-23. MR 0333941 (48:12260)
  • [17] G. J. Simmons and J. E. Wetzel, A two-coloring inequality for Euclidean two-arrangements, Proc. Amer. Math. Soc. 77 (1979), 124-127. MR 539644 (80k:51009)
  • [18] T. O. Strommer, Triangles in arrangements of lines, J. Combin. Theory Ser. A 23 (1977), 314-320. MR 0462985 (57:2949)
  • [19] E. Szemerédi and W. T. Trotter, Extremal problems in discrete geometry, Combinatorica 3 (1983). MR 729791 (85j:52014)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 52A37, 51M20

Retrieve articles in all journals with MSC: 52A37, 51M20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0760946-2
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society