Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the intrinsic topology and some related ideals of $ C(X)$


Authors: O. A. S. Karamzadeh and M. Rostami
Journal: Proc. Amer. Math. Soc. 93 (1985), 179-184
MSC: Primary 54C40
DOI: https://doi.org/10.1090/S0002-9939-1985-0766552-9
MathSciNet review: 766552
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The above topology is defined and studied on $ C(X)$, the ring of real-valued continuous functions on a completely regular Hausdorff space $ X$. The minimal ideals and the socle of $ C(X)$ are characterized via their corresponding $ z$-filters. We observe that these ideals are $ z$-ideals and $ X$ is discrete if and only if the socle of $ C(X)$ is a free ideal. It is also shown that for a class of topological spaces, containing all $ P$-spaces, the family $ {C_k}(X)$ of functions with compact support is identical with the intersection of the free maximal ideals of $ C(X)$.


References [Enhancements On Off] (What's this?)

  • [1] F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, 1973. MR 0423029 (54:11013)
  • [2] J. G. Brookshear, On projective prime ideals in $ C(X)$, Proc. Amer. Math. Soc. 69 (1978), 203-204. MR 0470929 (57:10672)
  • [3] W. W. Comfort, On the Hewitt realcompactification of a product space, Trans. Amer. Math. Soc. 131 (1968), 107-117. MR 0222846 (36:5896)
  • [4] L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, 1976. MR 0407579 (53:11352)
  • [5] L. Gillman, Countably generated ideals in rings of continuous functions, Proc. Amer. Math. Soc. 11 (1960), 660-666. MR 0156189 (27:6120)
  • [6] O. Goldman, A Wedderburn-Jacobson structure theorem, J. Algebra 34 (1975), 64-73. MR 0366975 (51:3220)
  • [7] R. C. Hayworth and R. A. McCoy, Baire spaces, Dissertationes Math. 141 (1977). MR 0431104 (55:4106)
  • [8] M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110-130. MR 0194880 (33:3086)
  • [9] I. Kaplansky, Topological rings, Amer. J. Math. 69 (1947), 153-183. MR 0019596 (8:434b)
  • [10] O. A. S. Karamzadeh, Projective maximal right ideals of self-injective rings, Proc. Amer. Math. Soc. 48 (1975), 286-288. MR 0360705 (50:13152)
  • [11] O. A. S. Karamzadeh and M. Motamedi, A note on rings in which every maximal ideal is generated by an idempotent, Proc. Japan Acad. Ser. A Math. Sei. 58 (1982), 124-125. MR 664552 (83i:16015)
  • [12] O. A. S. Karamzadeh, On maximal right ideals which are direct summands, Bull. Iran. Math. Soc. 18 (1983), 40-46. MR 738689 (85f:16037a)
  • [13] O. A. S. Karamzadeh and M. Motamedi, On the intersection of maximal right ideals which are direct summands, Bull. Iran. Math. Soc. 18 (1983), 47-54. MR 738690 (85f:16037b)
  • [14] O. A. S. Karamzadeh, On the classical Krull dimension of rings, Fund. Math. 117 (1983). MR 719833 (84k:16030)
  • [15] C. W. Kohls, Ideals in rings of continuous functions, Fund. Math. 45 (1975), 28-50. MR 0102731 (21:1517)
  • [16] J. Lambek, Rings and modules, Blaisdell, New York, 1966.
  • [17] M. Mandelker, Supports of continuous functions, Trans. Amer. Math. Soc. 156 (1971), 73-83. MR 0275367 (43:1124)
  • [18] G. De Marco, On the countably generated $ z$-ideals of $ C(X)$, Proc. Amer. Math. Soc. 31 (1972), 574-576. MR 0288563 (44:5760)
  • [19] M. Rajagopalan and R. F. Wheeler, Sequential compactness of $ X$ implies a compactness property for $ C(X)$, Canad J. Math. 28 (1976), 207-210. MR 0405341 (53:9135)
  • [20 S] M. Robinson, The intersection of the free maximal ideals in a complete space, Proc. Amer. Math. Soc. 17 (1966), 468-469. MR 0188974 (32:6401)
  • [21] D. Rudd, $ P$-ideals and $ F$-ideals in rings of continuous functions, Fund. Math. 88 (1970), 53-59. MR 0380716 (52:1613)
  • [22] W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39-42. MR 0085475 (19:46b)
  • [23] R. F. Wheeler, The strict topology for $ P$-spaces, Proc. Amer. Math. Soc. 41 (1973), 466-467. MR 0341048 (49:5798)
  • [24] O. Zariski and P. Samuel, Commutative algebra, vol. 1, Van Nostrand, New York, 1958. MR 0090581 (19:833e)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54C40

Retrieve articles in all journals with MSC: 54C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0766552-9
Keywords: Isolated maximal ideals, intrinsic topology, $ P$-space, minimal ideal, socle, real pseudo-finite space, $ P$-ideal, $ z$-ideal
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society