Self-dual lattices for maximal orders in group algebras

Author:
David Gluck

Journal:
Proc. Amer. Math. Soc. **93** (1985), 221-224

MSC:
Primary 20C10; Secondary 20C05

DOI:
https://doi.org/10.1090/S0002-9939-1985-0770524-8

MathSciNet review:
770524

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a finite group and an irreducible -module. Let be a Dedekind domain with quotient field such that is a unit in . For applications to topology it is of interest to know if contains a full self-dual -lattice. We show that such lattices always exist for some major classes of finite groups.

**[1]**W. Feit,*Characters of finite groups*, Benjamin, New York, 1967. MR**0219636 (36:2715)****[2]**D. Gluck,*A characterization of generalized permutation characters*, J. Algebra**63**(1980), 541-547. MR**570729 (81j:20016)****[3]**D. Gorenstein,*Finite groups*, Harper and Row, New York, 1968. MR**0231903 (38:229)****[4]**I. M. Isaacs,*Character theory of finite groups*, Academic Press, New York, 1976. MR**0460423 (57:417)****[5]**H. Jacobinski,*Genera and decomposition of lattices over orders*, Acta Math.**121**(1968), 1-29. MR**0251063 (40:4294)****[6]**T. Y. Lam,*Artin exponent of finite groups*, J. Algebra**9**(1968), 94-119. MR**0224705 (37:304)****[7]**J. Rasmussen,*Rationally represented and permutation characters of nilpotent groups*, J. Algebra**29**(1974), 504-509. MR**0360783 (50:13230)****[8]**-,*Artin index of faithful metacyclic groups*, J. Algebra**46**(1977), 511-522. MR**0457543 (56:15748)****[9]**I. Reiner,*Maximal orders*, Academic Press, London, 1975. MR**1972204 (2004c:16026)****[10]**I. Hambleton, L. Taylor and B. Williams,*An introduction to maps between surgery obstruction groups*, preprint. MR**764576 (86b:57017)****[11]**T. R. Wolf,*Solvable and nilpotent subgroups of*, Canad. J. Math.**34**(1982), 1097-1111. MR**675682 (84b:20057)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20C10,
20C05

Retrieve articles in all journals with MSC: 20C10, 20C05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1985-0770524-8

Article copyright:
© Copyright 1985
American Mathematical Society