Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the universality of words for the alternating groups


Author: Manfred Droste
Journal: Proc. Amer. Math. Soc. 96 (1986), 18-22
MSC: Primary 20F10; Secondary 20B30, 20D06
DOI: https://doi.org/10.1090/S0002-9939-1986-0813801-5
MathSciNet review: 813801
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the following theorem on the finite alternating groups $ {A_n}$: For each pair $ (p,q)$ of nonzero integers there exists an integer $ N(p,q)$ such that, for each $ n \geqslant N$, any even permutation $ a \in {A_n}$ can be written in the form $ a = {b^p} \cdot {c^q}$ for some suitable elements $ b,c \in {A_n}$. A similar result is shown to be true for the finite symmetric groups $ {S_n}$ provided that $ p$ or $ q$ is odd.


References [Enhancements On Off] (What's this?)

  • [1] E. A. Bertram, Even permutations as a product of two conjugate cycles, J. Combin. Theory Ser. (A) 12 (1972), 368-380. MR 0297853 (45:6905)
  • [2] J. L. Brenner, R. J. Evans and D. M. Silberger, The universality of words $ {x^r}{y^s}$ in alternating groups, Proc. Amer. Math. Soc. 96 (1986), 23-28. MR 813802 (88a:20047)
  • [3] M. Droste, Classes of words universal for the infinite symmetric groups, Algebra Universalis (to appear). MR 806615 (87d:20049)
  • [4] M. Droste and S. Shelah, On the universality of systems of words in permutation groups, Pacific J. Math. (to appear). MR 881762 (88b:20055)
  • [5] A. Ehrenfeucht, S. Fajtlowicz, J. Malitz and J. Mycielski, Some problems on the universality of words in groups, Algebra Universalis 11 (1980), 261-263. MR 588219 (81k:20045)
  • [6] A. Ehrenfeucht and D. Silberger, Universal terms of the form $ {B^n}{A^m}$, Algebra Universalis 10 (1980), 96-116. MR 552160 (81c:08012)
  • [7] P. Hall, Some constructions for locally finite groups, J. London Math. Soc. 34 (1959), 305-319. MR 0162845 (29:149)
  • [8] Hsü Ch'eng-hao, The commutators of the alternating group, Sci. Sinica 14 (1965), 339-342. MR 0183763 (32:1241)
  • [9] N. Itô, A theorem on the alternating group $ {A_n}(n \geqslant 5)$, Math. Japon. 2 (1951), 59-60. MR 0045714 (13:621g)
  • [10] G. Moran, Reflection classes whose cubes cover the alternating group, J. Combin. Theory Ser. A 21 (1976), 1-19. MR 0414673 (54:2769)
  • [11] G. Moran and others, Product of $ {p^m}$th powers in $ {A_n}$, solution of advanced problem 6315, Amer. Math. Monthly 89 (1982), 705.
  • [12] O. Ore, Some remarks on commutators, Proc. Amer. Math. Soc. 2 (1951), 307-314. MR 0040298 (12:671e)
  • [13] W. R. Scott, Group theory, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 0167513 (29:4785)
  • [14] D. M. Silberger, Are primitive words universal for infinite symmetric groups?, Trans. Amer. Math. Soc. 276 (1983), 841-852. MR 688980 (84c:20011)
  • [15] D. M. Silberger, For $ k$ big the word $ {x^m}{y^n}$ is universal for $ {A_k}$, Abstracts Amer. Math. Soc. 3 (1982), 293.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20F10, 20B30, 20D06

Retrieve articles in all journals with MSC: 20F10, 20B30, 20D06


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0813801-5
Keywords: Alternating groups, finite symmetric group, permutation groups, universal words, conjugacy classes
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society