Global stability of a biological model with time delay

Authors:
Suzanne M. Lenhart and Curtis C. Travis

Journal:
Proc. Amer. Math. Soc. **96** (1986), 75-78

MSC:
Primary 34K20; Secondary 92A15

DOI:
https://doi.org/10.1090/S0002-9939-1986-0813814-3

MathSciNet review:
813814

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives necessary and sufficient conditions for global stability of certain logistic delay differential equations for all values of the delay.

**[1]**H. R. Bailey and M. Z. Williams,*Some results on the differential difference equation*, J. Math. Anal. Appl.**15**(1966), 569-587. MR**0197886 (33:6046)****[2]**J. R. Beddington and R. M. May,*Time delays are not necessarily destabilizing*, Math. Biosci.**27**(1975), 109-117.**[3]**S. N. Busenberg and C. C. Travis,*On the use of reducible-functional differential equations in biological models*, J. Math. Anal. Appl.**89**(1982), 46-66. MR**672188 (84f:34102)****[4]**D. S. Cohen, E. Coutsias, and J. Neu,*Stable oscillations in single species growth models with hereditary effects*, Math. Biosci.**44**(1979), 255-267. MR**532312 (80c:92015)****[5]**K. L. Cooke and J. M. Ferreira,*Stability conditions for linear retarded functional differential equations*, preprint. MR**719331 (84k:34079)****[6]**J. M. Cushing,*Integrodifferential equations and delay models in population dynamics*, Lecture Notes in Biomathematics, no. 20, Springer-Verlag, Berlin, 1977. MR**0496838 (58:15300)****[7]**R. Datko,*A procedure for determination of the exponential stability of certain differential-difference equations*, Quart. Appl. Math.**36**(1978), 279-292. MR**508772 (80c:34080)****[8]**D. M. Fargue,*Reducibilité des sytèmes hereditaires a des systèmes dynamiques*, C. R. Acad. Sci. Paris, Sér. B.**277**(1973), 471-473.**[9]**J. K. Hale,*Sufficient conditions for stability and instability of autonomous functional-differential equations*, J. Differential Equations**1**(1965), 452-482. MR**0183938 (32:1414)****[10]**-,*Theory of functional differential equations*, Springer-Verlag, New York, 1977.**[11]**J. K. Hale, E. F. Infante, and F. P. Tsen,*Stability in linear delay equations*, Lefschetz Center for Dynamical Systems, Brown University Report #82-23.**[12]**N. D. Hayes,*Roots of the transcendental equation associated with a certain differential-difference equation*, J. London Math. Soc. (2)**25**(1950), 226-232. MR**0036426 (12:106d)****[13]**U. S. Koslesov,*Properties of solutions of a class of equations with lag which describe the dynamics of change in the population of a species with the age structure taken into account*, Math. USSR-Sb.**45**(1983), 91-100.**[14]**S. M. Lenhart and C. C. Travis,*Stability of functional partial differential equations*, J. Differential Equations (to appear). MR**794769 (87g:45011)****[15]**A. Mazarov,*On the differential-difference growth equation*, Search**4**(1973), 199-201.**[16]**N. McDonald,*Time lags in biological models*, Lecture Notes in Biomathematics, no. 27, Springer-Verlag, Berlin, 1978. MR**521439 (80j:92010)****[17]**R. V. Plemmons,*-matrix characterizations.*I:*Nonsingular**-matrices*, Linear Algebra Appl.**18**(1977), 175-188. MR**0444681 (56:3031)****[18]**W. M. Post and C. C. Travis,*Global stability in ecological models with continuous time delays*, Integral and Functional Differential Equations (T. Herdman, H. Stech, and S. Rankin, Eds.), Dekker, New York, 1981, pp. 241-249. MR**617054 (82j:92056)****[19]**A. Worz-Busekros,*Global stability in ecological systems with continuous time delays*, SIAM J. Appl. Math.**35**(1978), 123-134. MR**0490069 (58:9429)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34K20,
92A15

Retrieve articles in all journals with MSC: 34K20, 92A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1986-0813814-3

Keywords:
Lotka-Volterra delay differential equation,
global stability,
Liapunov function

Article copyright:
© Copyright 1986
American Mathematical Society