Global stability of a biological model with time delay

Authors:
Suzanne M. Lenhart and Curtis C. Travis

Journal:
Proc. Amer. Math. Soc. **96** (1986), 75-78

MSC:
Primary 34K20; Secondary 92A15

MathSciNet review:
813814

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives necessary and sufficient conditions for global stability of certain logistic delay differential equations for all values of the delay.

**[1]**Herbert R. Bailey and Michael Z. Williams,*Some results on the differential-difference equation 𝑥(𝑡)=∑^{𝑁}ᵢ₌₀𝐴ᵢ𝑥(𝑡-𝑇ᵢ)*, J. Math. Anal. Appl.**15**(1966), 569–587. MR**0197886****[2]**J. R. Beddington and R. M. May,*Time delays are not necessarily destabilizing*, Math. Biosci.**27**(1975), 109-117.**[3]**Stavros N. Busenberg and Curtis C. Travis,*On the use of reducible-functional-differential equations in biological models*, J. Math. Anal. Appl.**89**(1982), no. 1, 46–66. MR**672188**, 10.1016/0022-247X(82)90090-7**[4]**Donald S. Cohen, Evangelos Coutsias, and John C. Neu,*Stable oscillations in single species growth models with hereditary effects*, Math. Biosci.**44**(1979), no. 3-4, 255–267. MR**532312**, 10.1016/0025-5564(79)90085-3**[5]**Kenneth L. Cooke and José M. Ferreira,*Stability conditions for linear retarded functional-differential equations*, J. Math. Anal. Appl.**96**(1983), no. 2, 480–504. MR**719331**, 10.1016/0022-247X(83)90056-2**[6]**Jim M. Cushing,*Integrodifferential equations and delay models in population dynamics*, Springer-Verlag, Berlin-New York, 1977. Lecture Notes in Biomathematics, Vol. 20. MR**0496838****[7]**R. Datko,*A procedure for determination of the exponential stability of certain differential-difference equations*, Quart. Appl. Math.**36**(1978/79), no. 3, 279–292. MR**508772****[8]**D. M. Fargue,*Reducibilité des sytèmes hereditaires a des systèmes dynamiques*, C. R. Acad. Sci. Paris, Sér. B.**277**(1973), 471-473.**[9]**Jack K. Hale,*Sufficient conditions for stability and instability of autonomous functional-differential equations*, J. Differential Equations**1**(1965), 452–482. MR**0183938****[10]**-,*Theory of functional differential equations*, Springer-Verlag, New York, 1977.**[11]**J. K. Hale, E. F. Infante, and F. P. Tsen,*Stability in linear delay equations*, Lefschetz Center for Dynamical Systems, Brown University Report #82-23.**[12]**N. D. Hayes,*Roots of the transcendental equation associated with a certain difference-differential equation*, J. London Math. Soc.**25**(1950), 226–232. MR**0036426****[13]**U. S. Koslesov,*Properties of solutions of a class of equations with lag which describe the dynamics of change in the population of a species with the age structure taken into account*, Math. USSR-Sb.**45**(1983), 91-100.**[14]**Suzanne M. Lenhart and Curtis C. Travis,*Stability of functional partial differential equations*, J. Differential Equations**58**(1985), no. 2, 212–227. MR**794769**, 10.1016/0022-0396(85)90013-0**[15]**A. Mazarov,*On the differential-difference growth equation*, Search**4**(1973), 199-201.**[16]**Norman MacDonald,*Time lags in biological models*, Lecture Notes in Biomathematics, vol. 27, Springer-Verlag, Berlin-New York, 1978. MR**521439****[17]**R. J. Plemmons,*𝑀-matrix characterizations. I. Nonsingular 𝑀-matrices*, Linear Algebra and Appl.**18**(1977), no. 2, 175–188. MR**0444681****[18]**Wilfred M. Post and Curtis C. Travis,*Global stability in ecological models with continuous time delay*, Integral and functional differential equations (Proc. Conf., West Virginia Univ., Morgantown, W. Va., 1979) Lecture Notes in Pure and Appl. Math., vol. 67, Dekker, New York, 1981, pp. 241–250. MR**617054****[19]**Angelika Wörz-Busekros,*Global stability in ecological systems with continuous time delay*, SIAM J. Appl. Math.**35**(1978), no. 1, 123–134. MR**0490069**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34K20,
92A15

Retrieve articles in all journals with MSC: 34K20, 92A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1986-0813814-3

Keywords:
Lotka-Volterra delay differential equation,
global stability,
Liapunov function

Article copyright:
© Copyright 1986
American Mathematical Society