Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Global stability of a biological model with time delay

Authors: Suzanne M. Lenhart and Curtis C. Travis
Journal: Proc. Amer. Math. Soc. 96 (1986), 75-78
MSC: Primary 34K20; Secondary 92A15
MathSciNet review: 813814
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives necessary and sufficient conditions for global stability of certain logistic delay differential equations for all values of the delay.

References [Enhancements On Off] (What's this?)

  • [1] H. R. Bailey and M. Z. Williams, Some results on the differential difference equation $ x'(t) = \Sigma _{i = 0}^n {A_i}x(t - {T_i})$, J. Math. Anal. Appl. 15 (1966), 569-587. MR 0197886 (33:6046)
  • [2] J. R. Beddington and R. M. May, Time delays are not necessarily destabilizing, Math. Biosci. 27 (1975), 109-117.
  • [3] S. N. Busenberg and C. C. Travis, On the use of reducible-functional differential equations in biological models, J. Math. Anal. Appl. 89 (1982), 46-66. MR 672188 (84f:34102)
  • [4] D. S. Cohen, E. Coutsias, and J. Neu, Stable oscillations in single species growth models with hereditary effects, Math. Biosci. 44 (1979), 255-267. MR 532312 (80c:92015)
  • [5] K. L. Cooke and J. M. Ferreira, Stability conditions for linear retarded functional differential equations, preprint. MR 719331 (84k:34079)
  • [6] J. M. Cushing, Integrodifferential equations and delay models in population dynamics, Lecture Notes in Biomathematics, no. 20, Springer-Verlag, Berlin, 1977. MR 0496838 (58:15300)
  • [7] R. Datko, A procedure for determination of the exponential stability of certain differential-difference equations, Quart. Appl. Math. 36 (1978), 279-292. MR 508772 (80c:34080)
  • [8] D. M. Fargue, Reducibilité des sytèmes hereditaires a des systèmes dynamiques, C. R. Acad. Sci. Paris, Sér. B. 277 (1973), 471-473.
  • [9] J. K. Hale, Sufficient conditions for stability and instability of autonomous functional-differential equations, J. Differential Equations 1 (1965), 452-482. MR 0183938 (32:1414)
  • [10] -, Theory of functional differential equations, Springer-Verlag, New York, 1977.
  • [11] J. K. Hale, E. F. Infante, and F. P. Tsen, Stability in linear delay equations, Lefschetz Center for Dynamical Systems, Brown University Report #82-23.
  • [12] N. D. Hayes, Roots of the transcendental equation associated with a certain differential-difference equation, J. London Math. Soc. (2) 25 (1950), 226-232. MR 0036426 (12:106d)
  • [13] U. S. Koslesov, Properties of solutions of a class of equations with lag which describe the dynamics of change in the population of a species with the age structure taken into account, Math. USSR-Sb. 45 (1983), 91-100.
  • [14] S. M. Lenhart and C. C. Travis, Stability of functional partial differential equations, J. Differential Equations (to appear). MR 794769 (87g:45011)
  • [15] A. Mazarov, On the differential-difference growth equation, Search 4 (1973), 199-201.
  • [16] N. McDonald, Time lags in biological models, Lecture Notes in Biomathematics, no. 27, Springer-Verlag, Berlin, 1978. MR 521439 (80j:92010)
  • [17] R. V. Plemmons, $ M$-matrix characterizations. I: Nonsingular $ M$-matrices, Linear Algebra Appl. 18 (1977), 175-188. MR 0444681 (56:3031)
  • [18] W. M. Post and C. C. Travis, Global stability in ecological models with continuous time delays, Integral and Functional Differential Equations (T. Herdman, H. Stech, and S. Rankin, Eds.), Dekker, New York, 1981, pp. 241-249. MR 617054 (82j:92056)
  • [19] A. Worz-Busekros, Global stability in ecological systems with continuous time delays, SIAM J. Appl. Math. 35 (1978), 123-134. MR 0490069 (58:9429)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34K20, 92A15

Retrieve articles in all journals with MSC: 34K20, 92A15

Additional Information

Keywords: Lotka-Volterra delay differential equation, global stability, Liapunov function
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society