Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Extension of a theorem of Baayen and Helmberg on monothetic groups


Author: D. L. Armacost
Journal: Proc. Amer. Math. Soc. 96 (1986), 502-504
MSC: Primary 22A05
DOI: https://doi.org/10.1090/S0002-9939-1986-0822449-8
MathSciNet review: 822449
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ and $ K$ be compact monothetic groups and let $ \phi $ be a continuous homomorphism from $ G$ onto $ K$. If $ k$ is a generator of $ K$, must there exist a generator $ g$ of $ G$ such that $ \phi \left( g \right) = k?$? A useful theorem of Baayen and Helmberg provides an affirmative answer if $ K$ is the circle $ T$. We show that the answer remains affirmative as long as $ K$ is metrizable. We also provide an example to show that the answer may be negative for nonmetrizable $ K$.


References [Enhancements On Off] (What's this?)

  • [1] D. L. Armacost, Remark on my paper "Generators of monothetic groups", Canad. J. Math. 25 (1973), 672. MR 0316623 (47:5170)
  • [2] -, The structure of locally compact abelian groups, Dekker, New York, 1981. MR 637201 (83h:22010)
  • [3] P. C. Baayen and G. Helmberg, On families of equi-uniformly distributed sequences in compact spaces, Math. Ann. 161 (1965), 255-278. MR 0188188 (32:5627)
  • [4] L. Fuchs, Infinite abelian groups, Vol. 1, Academic Press, New York, 1970. MR 0255673 (41:333)
  • [5] E. Hewitt and K. Ross, Abstract harmonic analysis, Vol. 1, Academic Press, New York, 1963.
  • [6] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley, New York, 1974. MR 0419394 (54:7415)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22A05

Retrieve articles in all journals with MSC: 22A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0822449-8
Keywords: Monothetic, generator
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society