Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A group theoretical equivalent of the zero divisor problem

Author: A. I. Lichtman
Journal: Proc. Amer. Math. Soc. 97 (1986), 212-216
MSC: Primary 16A27; Secondary 20C07
MathSciNet review: 835867
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the zero divisor problem is equivalent to some problem about subgroups of a free group.

References [Enhancements On Off] (What's this?)

  • [1] D. Farkas and R. L. Snider, $ {K_0}$ and Noetherian group rings, J. Algebra 42 (1976), 192-198. MR 0422327 (54:10318)
  • [2] G. H. Cliff, Zero divisors and idempotents in group rings, Canad. J. Math. 32 (1980), 596-602. MR 586978 (81k:16011)
  • [3] J. Lewin and T. Lewin, An embedding of the group algebra of a torsion free $ 1$-relator group in a field, J. Algebra 52 (1978), 39-77. MR 0485972 (58:5764)
  • [4] K. W. Gruenberg, Relation modules of finite groups, CBMS Regional Conf. Ser. in Math., no. 25, Amer. Math. Soc., Providence, R.I., 1976. MR 0457538 (56:15743)
  • [5] B. Hartley and A. I. Lichtman, Relative higher relation modules, J. Pure Appl. Algebra 22 (1981), 75-89. MR 621288 (82j:20013)
  • [6] D. S. Passman, The algebraic structure of group rings, Wiley, New York, 1977. MR 470211 (81d:16001)
  • [7] G. Baumslag, Wreath products and extensions, Math. Z. 81 (1963), 286-299. MR 0151518 (27:1503)
  • [8] K. W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Math., vol. 143, Springer-Verlag, Berlin and New York, 1970. MR 0279200 (43:4923)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A27, 20C07

Retrieve articles in all journals with MSC: 16A27, 20C07

Additional Information

Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society