Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Most Riesz product measures are $ L\sp p$-improving


Author: David L. Ritter
Journal: Proc. Amer. Math. Soc. 97 (1986), 291-295
MSC: Primary 43A15; Secondary 43A25
DOI: https://doi.org/10.1090/S0002-9939-1986-0835883-7
MathSciNet review: 835883
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A Borel measure $ \mu $ on a compact abelian group $ G$ is $ {L^p}$-improving if, given $ p > 1$, there is a $ q = q(p,\mu ) > p$ and $ {\text{a}}\;K = K(p,q,\mu ) > 0$ such that $ {\left\Vert {\mu * f} \right\Vert _q} \leq K{\left\Vert f \right\Vert _p}$ for each $ f$ in $ {L^p}(G)$. Here the $ {L^p}$-improving Riesz product measures on infinite compact abelian groups are characterized by means of their Fourier transforms.


References [Enhancements On Off] (What's this?)

  • [1] W. Beckner, S. Janson, and D. Jerison, Convolution inequalities on the circle, Conference on Harmonic Analysis in Honor of Antoni Zygmund (Chicago, Ill., 1981), W. Beckner et al., eds., Wadsworth International Group, Belmont, Calif., 1983, pp. 32-43. MR 730056 (85j:42016)
  • [2] A. Bonami, Etude des coefficients de Fourier des fonctions de $ {L^p}(G)$, Ann. Inst. Fourier (Grenoble) 20 (1970), 335-402. MR 0283496 (44:727)
  • [3] G. Brown, Riesz products and generalized characters, Proc. London Math. Soc. (3)30, (1975), 209-238. MR 0372530 (51:8737)
  • [4] R. E. Edwards, Fourier series. Vol. 2, Springer-Verlag, New York, 1982. MR 667519 (83k:42001)
  • [5] C. C. Graham and O. C. McGehee, Essays in commutative harmonic analysis, Springer-Verlag, New York and Heidelberg, 1979. MR 550606 (81d:43001)
  • [6] E. Hewitt and H. S. Zuckerman, Singular measures with absolutely continuous convolution squares, Proc. Cambridge Philos. Soc. 62 (1966), 399-420. MR 0193435 (33:1655)
  • [7] W. Rudin, Fourier analysis on groups, Wiley, New York, 1962 MR 0152834 (27:2808)
  • [8] E. M. Stein, "Harmonic Analysis on $ {R^n}$," Studies in Harmonic Analysis, MAA Stud. Math., Vol. 13, Math. Assoc. America, Washington, D.C., 1976. MR 0461002 (57:990)
  • [9] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, 2nd rev. ed., Princeton Univ. Press, Princeton, N.J., 1975. MR 0304972 (46:4102)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A15, 43A25

Retrieve articles in all journals with MSC: 43A15, 43A25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0835883-7
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society