Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The Mackey continuity of the monotone rearrangement


Authors: Anthony Horsley and Andrzej J. Wrobel
Journal: Proc. Amer. Math. Soc. 97 (1986), 626-628
MSC: Primary 46E30
MathSciNet review: 845977
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (A, \mathcal{A},\mu )$ be a probability space, and let mes denote the Lebesgue measure on the Borel $ \sigma $-algebra $ \mathcal{B}$ in $ [0,1]$. The nondecreasing-rearrangement operator from the space $ {L^\infty }(\mu ) = {L^\infty }(A, \mathcal{A}, \mu)$ of real-valued essentially bounded functions into $ {L^\infty } = {L^\infty }([0,1]$, $ \mathcal{B}$, mes) is shown to be uniformly continuous in the Mackey topologies $ \tau ({L^\infty }(\mu )$, $ {L^1}(\mu ))$ and $ \tau ({L^\infty },{L^1})$ on $ {L^\infty }(\mu )$ and $ {L^\infty }$, respectively.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E30

Retrieve articles in all journals with MSC: 46E30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1986-0845977-8
PII: S 0002-9939(1986)0845977-8
Keywords: Nondecreasing rearrangement, Mackey topology
Article copyright: © Copyright 1986 American Mathematical Society